login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251894
T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row and column sum not 2 3 6 or 7 and every diagonal and antidiagonal sum 2 3 6 or 7
9
1280, 1664, 1664, 1280, 1232, 1280, 1280, 602, 602, 1280, 1534, 530, 556, 530, 1534, 1752, 594, 778, 778, 594, 1752, 2146, 790, 1260, 1316, 1260, 790, 2146, 2838, 1182, 1636, 1958, 1958, 1636, 1182, 2838, 3446, 1670, 2478, 2660, 3530, 2660, 2478, 1670
OFFSET
1,1
COMMENTS
Table starts
.1280.1664.1280..1280..1534...1752...2146....2838....3446....4406.....5830
.1664.1232..602...530...594....790...1182....1670....2474....3890.....5642
.1280..602..556...778..1260...1636...2478....3940....5958....9178....14534
.1280..530..778..1316..1958...2660...4490....7250...10634...17954....28994
.1534..594.1260..1958..3530...6072..11762...21346...39202...80834...147842
.1752..790.1636..2660..6072...9836..17774...38612...70970..132530...284490
.2146.1182.2478..4490.11762..17774..33218...84866..142178..265730...678914
.2838.1670.3940..7250.21346..38612..84866..252162..478370.1145858..3467266
.3446.2474.5958.10634.39202..70970.142178..478370.1017410.2120450..6956290
.4406.3890.9178.17954.80834.132530.265730.1145858.2120450.4251650.18333698
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 5*a(n-3) +a(n-5) -8*a(n-6) -4*a(n-8) +4*a(n-9) +5*a(n-11) -2*a(n-14) for n>22
k=2: a(n) = a(n-1) +6*a(n-3) -6*a(n-4) -8*a(n-6) +8*a(n-7) for n>14
k=3: a(n) = a(n-1) +6*a(n-3) -6*a(n-4) -8*a(n-6) +8*a(n-7) for n>12
k=4: a(n) = a(n-1) +4*a(n-3) -4*a(n-4) for n>9
k=5: a(n) = a(n-1) +12*a(n-3) -12*a(n-4) -32*a(n-6) +32*a(n-7) for n>12
k=6: a(n) = a(n-1) +12*a(n-3) -12*a(n-4) -32*a(n-6) +32*a(n-7) for n>12
k=7: a(n) = a(n-1) +8*a(n-3) -8*a(n-4) for n>9
EXAMPLE
Some solutions for n=4 k=4
..2..1..2..2..1..2....3..3..2..3..0..1....3..0..2..3..3..2....1..3..0..1..0..3
..3..2..3..3..2..3....3..3..2..3..3..2....2..2..0..2..2..1....1..0..0..1..0..0
..3..2..3..3..2..3....2..2..0..2..2..1....3..3..2..3..3..2....2..1..1..3..1..1
..2..0..2..2..0..2....3..3..2..3..3..2....3..3..2..3..3..2....1..0..0..1..0..0
..0..2..3..3..2..3....0..3..2..3..3..2....2..2..0..2..2..1....1..0..0..1..0..3
..3..2..3..3..2..3....2..2..1..2..2..1....3..3..2..3..3..2....2..1..1..2..1..2
CROSSREFS
Sequence in context: A234137 A160233 A251887 * A251791 A251784 A234315
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 10 2014
STATUS
approved