The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A345516 Numbers that are the sum of six cubes in seven or more ways. 8

%I

%S 1710,1766,1773,1981,1988,2051,2105,2160,2168,2196,2249,2251,2259,

%T 2277,2314,2322,2349,2368,2375,2376,2417,2424,2431,2438,2457,2466,

%U 2480,2492,2494,2513,2520,2531,2538,2539,2548,2555,2557,2564,2565,2574,2583,2593,2611

%N Numbers that are the sum of six cubes in seven or more ways.

%H Sean A. Irvine, <a href="/A345516/b345516.txt">Table of n, a(n) for n = 1..10000</a>

%e 1766 is a term because 1766 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 11^3 = 1^3 + 1^3 + 1^3 + 5^3 + 5^3 + 10^3 = 1^3 + 1^3 + 2^3 + 3^3 + 8^3 + 9^3 = 1^3 + 3^3 + 3^3 + 5^3 + 8^3 + 8^3 = 1^3 + 3^3 + 3^3 + 4^3 + 7^3 + 9^3 = 2^3 + 2^3 + 3^3 + 6^3 + 6^3 + 9^3 = 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 10^3.

%o (Python)

%o from itertools import combinations_with_replacement as cwr

%o from collections import defaultdict

%o keep = defaultdict(lambda: 0)

%o power_terms = [x**3 for x in range(1, 1000)]

%o for pos in cwr(power_terms, 6):

%o tot = sum(pos)

%o keep[tot] += 1

%o rets = sorted([k for k, v in keep.items() if v >= 7])

%o for x in range(len(rets)):

%o print(rets[x])

%Y Cf. A344811, A345180, A345515, A345517, A345525, A345564, A345769.

%K nonn

%O 1,1

%A _David Consiglio, Jr._, Jun 20 2021

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 26 12:37 EST 2022. Contains 350598 sequences. (Running on oeis4.)