OFFSET
1,1
COMMENTS
The identity (10368*n^2 - 288*n + 1)^2 - (36*n^2-n)*(1728*n-24)^2 = 1 can be written as A157288(n)^2 - A157286(n)*a(n)^2 = 1 (see also second part of the initial comment in A157286). - Vincenzo Librandi, Jan 28 2012
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Vincenzo Librandi, X^2-AY^2=1
Index entries for linear recurrences with constant coefficients, signature (2,-1).
FORMULA
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jan 28 2012
G.f.: x*(24*x+1704)/(x-1)^2. - Vincenzo Librandi, Jan 28 2012
MATHEMATICA
LinearRecurrence[{2, -1}, {1704, 3432}, 40] (* Vincenzo Librandi, Jan 28 2012 *)
PROG
(Magma) I:=[1704, 3432]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Jan 28 2012
(PARI) for(n=1, 40, print1(1728*n-24", ")); \\ Vincenzo Librandi, Jan 28 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Feb 27 2009
EXTENSIONS
Comment rewritten by Bruno Berselli, Jan 28 2012
STATUS
approved