The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A345782 Numbers that are the sum of seven cubes in exactly ten ways. 6
1704, 1711, 1800, 1837, 1863, 1926, 1938, 1963, 2008, 2019, 2045, 2053, 2059, 2078, 2113, 2143, 2161, 2171, 2176, 2217, 2223, 2250, 2260, 2266, 2276, 2286, 2295, 2304, 2313, 2315, 2331, 2350, 2354, 2357, 2374, 2404, 2412, 2413, 2442, 2444, 2446, 2447, 2511 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Differs from A345506 at term 3 because 1774 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 12^3 = 1^3 + 1^3 + 1^3 + 2^3 + 6^3 + 6^3 + 11^3 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 9^3 + 10^3 = 1^3 + 1^3 + 4^3 + 5^3 + 5^3 + 9^3 + 9^3 = 1^3 + 2^3 + 3^3 + 4^3 + 6^3 + 9^3 + 9^3 = 1^3 + 2^3 + 4^3 + 4^3 + 5^3 + 8^3 + 10^3 = 1^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3 + 11^3 = 2^3 + 2^3 + 2^3 + 4^3 + 7^3 + 7^3 + 10^3 = 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 6^3 + 11^3 = 3^3 + 3^3 + 6^3 + 6^3 + 6^3 + 7^3 + 9^3 = 4^3 + 4^3 + 4^3 + 5^3 + 6^3 + 8^3 + 9^3.
Likely finite.
LINKS
EXAMPLE
1711 is a term because 1711 = 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 8^3 + 8^3 = 1^3 + 1^3 + 2^3 + 3^3 + 5^3 + 8^3 + 8^3 = 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 7^3 + 9^3 = 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 4^3 + 10^3 = 1^3 + 2^3 + 2^3 + 2^3 + 6^3 + 6^3 + 9^3 = 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 10^3 = 1^3 + 3^3 + 3^3 + 4^3 + 5^3 + 7^3 + 8^3 = 2^3 + 2^3 + 3^3 + 5^3 + 6^3 + 6^3 + 8^3 = 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 6^3 + 9^3 = 4^3 + 4^3 + 5^3 + 5^3 + 6^3 + 6^3 + 6^3.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 10])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
Sequence in context: A166400 A210121 A345506 * A157287 A029559 A222553
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 02:13 EDT 2024. Contains 372807 sequences. (Running on oeis4.)