The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A345784 Numbers that are the sum of eight cubes in exactly two ways. 7
 132, 139, 158, 160, 167, 174, 181, 186, 193, 195, 197, 200, 212, 216, 219, 238, 244, 251, 258, 265, 272, 277, 288, 296, 298, 300, 301, 303, 307, 314, 315, 317, 321, 322, 327, 328, 329, 333, 334, 336, 338, 340, 341, 348, 350, 352, 356, 359, 360, 361, 363, 366 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Differs from A345532 at term 16 because 223 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 6^3 = 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 5^3. Likely finite. LINKS Sean A. Irvine, Table of n, a(n) for n = 1..173 EXAMPLE 139 is a term because 139 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 4^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3. PROG (Python) from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1, 1000)] for pos in cwr(power_terms, 8): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 2]) for x in range(len(rets)): print(rets[x]) CROSSREFS Cf. A345532, A345774, A345783, A345785, A345794, A345834. Sequence in context: A211407 A108601 A345532 * A039603 A354812 A030026 Adjacent sequences: A345781 A345782 A345783 * A345785 A345786 A345787 KEYWORD nonn AUTHOR David Consiglio, Jr., Jun 26 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 22 02:28 EDT 2024. Contains 373561 sequences. (Running on oeis4.)