login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A345786 Numbers that are the sum of eight cubes in exactly four ways. 7
256, 347, 382, 401, 408, 427, 434, 438, 445, 464, 478, 480, 490, 499, 502, 506, 511, 516, 523, 530, 532, 534, 537, 560, 565, 567, 569, 571, 578, 586, 593, 595, 600, 602, 604, 605, 611, 612, 616, 619, 621, 624, 626, 643, 645, 656, 660, 663, 664, 668, 675, 679 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Differs from A345534 at term 11 because 471 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 + 5^3 + 6^3 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 6^3 + 6^3 = 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3 = 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 5^3 + 5^3 + 5^3.

Likely finite.

LINKS

Sean A. Irvine, Table of n, a(n) for n = 1..207

EXAMPLE

347 is a term because 347 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 5^3 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 5^3.

PROG

(Python)

from itertools import combinations_with_replacement as cwr

from collections import defaultdict

keep = defaultdict(lambda: 0)

power_terms = [x**3 for x in range(1, 1000)]

for pos in cwr(power_terms, 8):

tot = sum(pos)

keep[tot] += 1

rets = sorted([k for k, v in keep.items() if v == 4])

for x in range(len(rets)):

print(rets[x])

CROSSREFS

Cf. A345534, A345776, A345785, A345787, A345796, A345836.

Sequence in context: A044979 A352595 A345534 * A186473 A046309 A036332

Adjacent sequences: A345783 A345784 A345785 * A345787 A345788 A345789

KEYWORD

nonn

AUTHOR

David Consiglio, Jr., Jun 26 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 23:46 EST 2022. Contains 358572 sequences. (Running on oeis4.)