login
A345781
Numbers that are the sum of seven cubes in exactly nine ways.
7
1496, 1648, 1720, 1737, 1772, 1781, 1802, 1835, 1844, 1882, 1891, 1898, 1900, 1907, 1912, 1919, 1945, 1952, 1954, 1961, 1996, 2000, 2012, 2026, 2071, 2080, 2098, 2107, 2110, 2115, 2116, 2132, 2134, 2136, 2139, 2150, 2152, 2168, 2178, 2185, 2187, 2195, 2205
OFFSET
1,1
COMMENTS
Differs from A345527 at term 3 because 1704 = 1^3 + 1^3 + 1^3 + 3^3 + 6^3 + 9^3 + 9^3 = 1^3 + 1^3 + 1^3 + 4^3 + 5^3 + 8^3 + 10^3 = 1^3 + 1^3 + 2^3 + 2^3 + 7^3 + 7^3 + 10^3 = 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 6^3 + 11^3 = 1^3 + 2^3 + 4^3 + 6^3 + 7^3 + 7^3 + 9^3 = 2^3 + 2^3 + 2^3 + 2^3 + 5^3 + 6^3 + 11^3 = 2^3 + 2^3 + 3^3 + 5^3 + 8^3 + 8^3 + 8^3 = 3^3 + 3^3 + 3^3 + 4^3 + 6^3 + 7^3 + 10^3 = 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 9^3 + 9^3 = 3^3 + 6^3 + 6^3 + 6^3 + 7^3 + 7^3 + 7^3.
Likely finite.
LINKS
EXAMPLE
1648 is a term because 1648 = 1^3 + 1^3 + 1^3 + 2^3 + 4^3 + 7^3 + 9^3 = 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 10^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 5^3 + 10^3 = 1^3 + 1^3 + 3^3 + 4^3 + 5^3 + 7^3 + 8^3 = 1^3 + 2^3 + 2^3 + 5^3 + 6^3 + 6^3 + 8^3 = 1^3 + 3^3 + 3^3 + 4^3 + 4^3 + 6^3 + 9^3 = 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 6^3 + 9^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 8^3 + 8^3 = 3^3 + 3^3 + 3^3 + 5^3 + 5^3 + 7^3 + 7^3.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 9])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved