login
A345778
Numbers that are the sum of seven cubes in exactly six ways.
7
955, 969, 1046, 1053, 1079, 1107, 1117, 1121, 1158, 1161, 1177, 1184, 1196, 1198, 1216, 1222, 1242, 1254, 1272, 1280, 1287, 1291, 1294, 1297, 1298, 1310, 1324, 1350, 1351, 1355, 1366, 1369, 1376, 1378, 1388, 1403, 1404, 1415, 1417, 1418, 1422, 1433, 1437
OFFSET
1,1
COMMENTS
Differs from A345524 at term 5 because 1072 = 1^3 + 1^3 + 1^3 + 5^3 + 6^3 + 6^3 + 8^3 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 10^3 = 1^3 + 1^3 + 3^3 + 4^3 + 5^3 + 5^3 + 9^3 = 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 6^3 + 9^3 = 2^3 + 4^3 + 4^3 + 5^3 + 5^3 + 7^3 + 7^3 = 3^3 + 3^3 + 3^3 + 6^3 + 6^3 + 6^3 + 7^3 = 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 6^3 + 8^3.
Likely finite.
LINKS
EXAMPLE
969 is a term because 969 = 1^3 + 1^3 + 1^3 + 3^3 + 5^3 + 6^3 + 6^3 = 1^3 + 2^3 + 2^3 + 2^3 + 5^3 + 5^3 + 7^3 = 1^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 6^3 = 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 8^3 = 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 6^3 = 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 6^3.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 6])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved