login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A345775 Numbers that are the sum of seven cubes in exactly three ways. 7
222, 229, 248, 255, 262, 281, 283, 285, 318, 346, 370, 374, 377, 379, 381, 396, 400, 407, 412, 419, 426, 433, 437, 438, 444, 451, 463, 472, 475, 477, 489, 494, 501, 505, 507, 510, 522, 529, 533, 536, 559, 564, 566, 568, 570, 577, 578, 584, 585, 592, 594, 596 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Differs from A345521 at term 28 because 470 = 1^3 + 1^3 + 1^3 + 1^3 + 5^3 + 5^3 + 6^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 6^3 + 6^3 = 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3 = 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 6^3.
Likely finite.
LINKS
EXAMPLE
229 is a term because 229 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 5^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 3])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
Sequence in context: A043612 A371423 A345521 * A361628 A101955 A063352
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 25 01:41 EDT 2024. Contains 374585 sequences. (Running on oeis4.)