login
A345515
Numbers that are the sum of six cubes in six or more ways.
8
1377, 1488, 1586, 1595, 1647, 1673, 1677, 1710, 1738, 1764, 1766, 1773, 1799, 1829, 1836, 1837, 1862, 1881, 1890, 1911, 1953, 1955, 1981, 1988, 2007, 2011, 2014, 2018, 2025, 2044, 2051, 2070, 2079, 2097, 2105, 2107, 2108, 2142, 2153, 2160, 2168, 2170, 2177
OFFSET
1,1
LINKS
EXAMPLE
1488 is a term because 1488 = 1^3 + 1^3 + 1^3 + 3^3 + 8^3 + 8^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 10^3 = 1^3 + 2^3 + 3^3 + 6^3 + 6^3 + 8^3 = 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 10^3 = 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 9^3 = 3^3 + 5^3 + 5^3 + 6^3 + 6^3 + 6^3.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 1000)]
for pos in cwr(power_terms, 6):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 6])
for x in range(len(rets)):
print(rets[x])
KEYWORD
nonn
AUTHOR
STATUS
approved