login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A345819
Numbers that are the sum of six fourth powers in exactly seven ways.
8
21251, 43875, 48276, 49796, 53315, 58500, 59795, 59811, 67875, 68306, 69155, 69779, 71955, 72051, 72131, 73970, 74420, 74851, 77010, 80291, 80515, 81875, 82275, 84515, 86436, 86451, 86531, 87075, 88355, 88660, 88675, 90355, 91475, 93410, 93650, 94690, 95155
OFFSET
1,1
COMMENTS
Differs from A345564 at term 6 because 58035 = 1^4 + 1^4 + 9^4 + 10^4 + 12^4 + 12^4 = 1^4 + 4^4 + 5^4 + 8^4 + 11^4 + 14^4 = 1^4 + 5^4 + 6^4 + 11^4 + 12^4 + 12^4 = 2^4 + 2^4 + 4^4 + 5^4 + 13^4 + 13^4 = 2^4 + 6^4 + 6^4 + 7^4 + 7^4 + 15^4 = 2^4 + 8^4 + 10^4 + 11^4 + 11^4 + 11^4 = 3^4 + 4^4 + 4^4 + 4^4 + 9^4 + 15^4 = 4^4 + 5^4 + 6^4 + 9^4 + 12^4 + 13^4.
LINKS
EXAMPLE
43875 is a term because 43875 = 1^4 + 2^4 + 9^4 + 9^4 + 10^4 + 12^4 = 2^4 + 2^4 + 2^4 + 5^4 + 11^4 + 13^4 = 2^4 + 2^4 + 5^4 + 7^4 + 7^4 + 14^4 = 2^4 + 5^4 + 6^4 + 9^4 + 11^4 + 12^4 = 3^4 + 7^4 + 8^4 + 9^4 + 10^4 + 12^4 = 4^4 + 4^4 + 7^4 + 7^4 + 10^4 + 13^4 = 5^4 + 7^4 + 8^4 + 8^4 + 8^4 + 13^4.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 6):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 7])
for x in range(len(rets)):
print(rets[x])
KEYWORD
nonn
AUTHOR
STATUS
approved