The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A352949 Composite numbers of the form 2*k^2 + 29. 2
1711, 1829, 2077, 2479, 3071, 3901, 5029, 6527, 6757, 7471, 7967, 8479, 10397, 10981, 11581, 14141, 15167, 15517, 15871, 16591, 16957, 17701, 18079, 18847, 19631, 20837, 22927, 23791, 25567, 26941, 27877, 28829, 29797, 30287, 31279, 31781, 32287, 35941, 38117 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The first two terms that are not semiprimes, and their prime factorizations, are:
a(62) = 2*185^2 + 29 = 68479 = 31*47*47,
a(63) = 2*187^2 + 29 = 69967 = 31*37*61.
--
No number of the form 2^k*2 + 29 has any prime factor < 29, as can be proved by showing that 2*k^2 + 29 (mod p) takes only nonzero values for all primes p < 29:
+----+-----------------------------------------------+
| p | Residues modulo p of 2*k^2 + 29 |
+----+-----------------------------------------------+
| 2 | 1 |
| 3 | 1, 2 |
| 5 | 1, 2, 4 |
| 7 | 1, 2, 3, 5 |
| 11 | 2, 3, 4, 6, 7, 9 |
| 13 | 1, 3, 5, 8, 9, 10, 11 |
| 17 | 3, 4, 8, 10, 11, 12, 13, 14, 16 |
| 19 | 1, 3, 4, 5, 6, 9, 10, 12, 13, 18 |
| 23 | 1, 6, 7, 8, 9, 10, 12, 14, 15, 18, 19, 22 |
+----+-----------------------------------------------+
Idea and table from Jon E. Schoenfield.
Example of explanation:
if k ~ 0 (mod 3) then k^2 ~ 0 (mod 3), so 2*k^2 + 29 ~ 29 (mod 3) ~ 2 (mod 3);
if k ~ 1 (mod 3) or if k ~ 2 (mod 3) ~ -1 (mod 3), then k^2 ~ 1 (mod 3), so 2*k^2 + 29 ~ 31 (mod 3) ~ 1 (mod 3).
--
A number of the form 2*k^2 + 29 has the prime 29 as a factor iff k ~ 0 (mod 29).
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..10000.
FORMULA
a(n) = 2*(A007642(n))^2 + 29.
EXAMPLE
a(5) = 3071 = 37*83 = 2*39^2 + 29 is composite and of the form 2*k^2 + 29.
a(62) = 68479 = 31*47^2 = 2*185^2 + 29 is composite and of the form 2*k^2 + 29.
MATHEMATICA
Select[2*Range[150]^2 + 29, CompositeQ] (* Amiram Eldar, Apr 15 2022 *)
PROG
(Python)
from sympy import isprime
print([m for m in (2*k**2+29 for k in range(140)) if not isprime(m)]) # Michael S. Branicky, Apr 15 2022
CROSSREFS
Cf. A007642 for arguments k.
Cf. 2*A353004^2 + 29 = A241554, which is a subsequence, for semiprimes.
Cf. 2*A352800^2 + 29 = A007641 for primes.
Sequence in context: A345769 A062916 A241554 * A129540 A293480 A227218
KEYWORD
nonn
AUTHOR
Rémi Guillaume, Apr 10 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 12 13:39 EDT 2024. Contains 373331 sequences. (Running on oeis4.)