The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A352949 Composite numbers of the form 2*k^2 + 29. 2
 1711, 1829, 2077, 2479, 3071, 3901, 5029, 6527, 6757, 7471, 7967, 8479, 10397, 10981, 11581, 14141, 15167, 15517, 15871, 16591, 16957, 17701, 18079, 18847, 19631, 20837, 22927, 23791, 25567, 26941, 27877, 28829, 29797, 30287, 31279, 31781, 32287, 35941, 38117 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The first two terms that are not semiprimes, and their prime factorizations, are: a(62) = 2*185^2 + 29 = 68479 = 31*47*47, a(63) = 2*187^2 + 29 = 69967 = 31*37*61. -- No number of the form 2^k*2 + 29 has any prime factor < 29, as can be proved by showing that 2*k^2 + 29 (mod p) takes only nonzero values for all primes p < 29: +----+-----------------------------------------------+ | p | Residues modulo p of 2*k^2 + 29 | +----+-----------------------------------------------+ | 2 | 1 | | 3 | 1, 2 | | 5 | 1, 2, 4 | | 7 | 1, 2, 3, 5 | | 11 | 2, 3, 4, 6, 7, 9 | | 13 | 1, 3, 5, 8, 9, 10, 11 | | 17 | 3, 4, 8, 10, 11, 12, 13, 14, 16 | | 19 | 1, 3, 4, 5, 6, 9, 10, 12, 13, 18 | | 23 | 1, 6, 7, 8, 9, 10, 12, 14, 15, 18, 19, 22 | +----+-----------------------------------------------+ Idea and table from Jon E. Schoenfield. Example of explanation: if k ~ 0 (mod 3) then k^2 ~ 0 (mod 3), so 2*k^2 + 29 ~ 29 (mod 3) ~ 2 (mod 3); if k ~ 1 (mod 3) or if k ~ 2 (mod 3) ~ -1 (mod 3), then k^2 ~ 1 (mod 3), so 2*k^2 + 29 ~ 31 (mod 3) ~ 1 (mod 3). -- A number of the form 2*k^2 + 29 has the prime 29 as a factor iff k ~ 0 (mod 29). LINKS Michael S. Branicky, Table of n, a(n) for n = 1..10000. Rémi Guillaume, Examples of prime factorizations and prime factor distributions, and proofs. FORMULA a(n) = 2*(A007642(n))^2 + 29. EXAMPLE a(5) = 3071 = 37*83 = 2*39^2 + 29 is composite and of the form 2*k^2 + 29. a(62) = 68479 = 31*47^2 = 2*185^2 + 29 is composite and of the form 2*k^2 + 29. MATHEMATICA Select[2*Range[150]^2 + 29, CompositeQ] (* Amiram Eldar, Apr 15 2022 *) PROG (Python) from sympy import isprime print([m for m in (2*k**2+29 for k in range(140)) if not isprime(m)]) # Michael S. Branicky, Apr 15 2022 CROSSREFS Cf. A007642 for arguments k. Cf. 2*A353004^2 + 29 = A241554, which is a subsequence, for semiprimes. Cf. 2*A352800^2 + 29 = A007641 for primes. Sequence in context: A345769 A062916 A241554 * A129540 A293480 A227218 Adjacent sequences: A352946 A352947 A352948 * A352950 A352951 A352952 KEYWORD nonn AUTHOR Rémi Guillaume, Apr 10 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 12 13:39 EDT 2024. Contains 373331 sequences. (Running on oeis4.)