login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352951
Primes p such that p+2, (p^2-5)/2-p, (p^2-1)/2+p, and (p^2+3)/2+3*p are all prime.
1
5, 29, 599, 26699, 59669, 72869, 189389, 285839, 389999, 508619, 623669, 708989, 862229, 908879, 945629, 945809, 953789, 1002149, 1134389, 1138409, 1431569, 1461209, 1712549, 2110289, 2127269, 2158589, 2704769, 2727299, 2837279, 3004049, 3068909, 3091379, 3280229, 3336659, 3402239, 3546269
OFFSET
1,1
COMMENTS
Lower twin primes p such that if q = p+2, then (p*q-1)/2, (p*q-1)/2-p-q and (p*q-1)/2+p+q are also prime.
All terms but the first == 29 (mod 30).
LINKS
EXAMPLE
a(3)=599 is a term because it, 599+2 = 601, (599*601-1)/2 = 179999, 179999-599-601 = 178799, and 179999+599+601 = 181199 are prime.
MAPLE
R:= 5: count:= 0:
for p from 29 by 30 while count < 60 do
if isprime(p) and isprime(p+2) then
q:= p+2; r:= (p*q-1)/2;
if isprime(r) and isprime(r+p+q) and isprime(r-p-q) then
count:= count+1; R:= R, p;
fi
fi
od:
R;
MATHEMATICA
Select[Prime[Range[250000]], And @@ PrimeQ[{# + 2, (#^2 - 5)/2 - #, (#^2 - 1)/2 + #, (#^2 + 3)/2 + 3*#}] &] (* Amiram Eldar, Apr 11 2022 *)
Select[Prime[Range[260000]], AllTrue[{#+2, (#^2-5)/2-#, (#^2-1)/2+#, (#^2+3)/2+3#}, PrimeQ]&] (* Harvey P. Dale, Jun 12 2024 *)
PROG
(Python)
from itertools import islice
from sympy import isprime, nextprime
def agen(): # generator of terms
p, q = 3, 5
while True:
if q == p+2:
t, s = (p*q-1)//2, p+q
if isprime(t) and isprime(t+s) and isprime(t-s):
yield p
p, q = q, nextprime(q)
print(list(islice(agen(), 36))) # Michael S. Branicky, Apr 10 2022
CROSSREFS
Cf. A352948.
Subsequence of A001359.
Sequence in context: A259534 A176680 A352948 * A069142 A144994 A263369
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Apr 10 2022
STATUS
approved