login
A227218
Smallest triangular number ending in n ones.
3
1, 1711, 105111, 6271111, 664611111, 222222111111, 22222221111111, 2222222211111111, 2517912111111111, 18428299161111111111, 2222222222211111111111, 222222222222111111111111, 22222222222221111111111111, 1090161504430911111111111111
OFFSET
1,2
COMMENTS
If a triangular number ends in like digits then it can only end in 0's, 1's, 5's or 6's.
The sequence is infinite because the sequence of triangular numbers 21, 2211, 222111, 22221111, ... (A319170) is infinite.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..501 (terms 1..200 from Giovanni Resta)
EXAMPLE
a(2) = 1711 because 1711 is the smallest triangular number ending in 2 '1's.
MATHEMATICA
t = {}; Do[Do[x = n*(n + 1)/2; If[Mod[x, 10^m] == (10^m - 1)/9, AppendTo[t, x]; Break[]], {n, 1, 10^m}], {m, 1, 10}]; t
a[n_] := Block[{x, y, s}, s = y /. List@ ToRules[ Reduce[(y+1)* y/2 == x*10^n +(10^n - 1)/9 && y > 0 && x >= 0, {y, x}, Integers] /. C[1] -> 0]; Min[s*(s + 1)/2]]; Array[a, 20] (* Giovanni Resta, Sep 20 2013 *)
PROG
(Python)
from sympy import sqrt_mod_iter
def A227218(n):
k, a = 10**n<<1, (10**n-1)//9<<1
m = (a<<2)+1
return min(b for b in ((d>>1)*((d>>1)+1) for d in sqrt_mod_iter(m, k) if d&1) if b%k==a)>>1 # Chai Wah Wu, May 04 2024
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Shyam Sunder Gupta, Sep 19 2013
EXTENSIONS
a(11)-a(14) from Giovanni Resta, Sep 20 2013
STATUS
approved