login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242102
Semiprimes that are the concatenation of a prime and the previous prime.
1
1713, 2319, 2923, 4341, 6159, 7167, 8983, 103101, 151149, 157151, 163157, 167163, 173167, 191181, 197193, 233229, 257251, 277271, 283281, 311307, 337331, 367359, 373367, 421419, 431421, 439433, 449443, 463461, 467463, 479467, 487479, 509503, 521509, 547541, 557547
OFFSET
1,1
LINKS
EXAMPLE
13 and 17 are consecutive primes. Their reverse concatenation = 1713 = 3 * 571, which is semiprime.
19 and 23 are consecutive primes. Their reverse concatenation = 2319 = 3 * 773, which is semiprime.
MAPLE
select(k -> numtheory:-bigomega(k)=2, [seq(parse(cat(ithprime(n+1), ithprime(n))), n=1..200)]);
MATHEMATICA
A242102 = {}; Do[t = FromDigits[Flatten[IntegerDigits /@ {Prime[n], Prime[n - 1]}]]; If[PrimeOmega[t] == 2, AppendTo[A242102, t]], {n, 2, 200}]; A242102
PROG
(PARI)
forprime(p=1, 10^3, q=concat(Str(p), Str(precprime(p-1))); if(bigomega(eval(q))==2, print1(eval(q), ", "))) \\ Derek Orr, Aug 15 2014
CROSSREFS
KEYWORD
nonn,base
AUTHOR
K. D. Bajpai, Aug 15 2014
STATUS
approved