login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242103
Numbers m such that m^2 - 1 is the product of three distinct Fibonacci numbers > 1.
0
7, 9, 11, 14, 29, 76, 121, 199, 329, 521, 659, 1364, 3571, 4523, 7307, 9349, 24476, 64079, 167761, 212533, 439204, 1149851, 3010349, 7881196, 20633239, 54018521, 141422324, 370248451, 969323029, 2537720636, 6643838879, 17393796001, 45537549124, 119218851371
OFFSET
1,1
COMMENTS
Conjecture : except the numbers 9, 14, 121, 329, 659, 4523, 7307 and 212533, a(n) is a Lucas number (A000204).
EXAMPLE
The non-Lucas number 9 is in the sequence because 9^2-1 = 80 = 2*5*8 is the product of three Fibonacci numbers.
The Lucas number 11 is in the sequence because 11^2-1 = 120 = 3*5*8 is the product of three Fibonacci numbers.
MAPLE
with(combinat, fibonacci):with(numtheory):nn:=150:lst:={}:T:=array(1..nn):
for n from 1 to nn do:
T[n]:=fibonacci(n):
od:
for p from 1 to nn-1 do:
for q from p+1 to nn-1 do:
for r from q+1 to nn-1 do:
f:=T[p]*T[q]*T[r]+1:x:=sqrt(f):
if x=floor(x)and T[p]<>1
then
lst:=lst union {x}:
else
fi:
od:
od:
od:
print(lst):
PROG
(PARI)
v=[]; for(i=3, 100, for(j=i+1, 100, for(k=j+1, 100, s=fibonacci(i)*fibonacci(j)*fibonacci(k); if(issquare(s+1), v=concat(sqrtint(s+1), v))))); v=vecsort(v); v \\ Derek Orr, Aug 27 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Aug 15 2014
STATUS
approved