login
A024828
a(n) = least m such that if r and s in {h/(1 + h^2): h = 1,2,...,n} satisfy r < s, then r < k/m < s for some integer k.
2
7, 9, 11, 14, 18, 27, 32, 44, 58, 66, 83, 102, 112, 134, 158, 184, 198, 227, 258, 291, 308, 344, 382, 422, 464, 486, 531, 578, 627, 678, 704, 758, 814, 872, 932, 994, 1026, 1091, 1158, 1227, 1298, 1371, 1408, 1484, 1562, 1642, 1724, 1808, 1894, 1938, 2027, 2118, 2211, 2306
OFFSET
2,1
COMMENTS
For a guide to related sequences, see A001000. - Clark Kimberling, Aug 07 2012
LINKS
MATHEMATICA
leastSeparator[seq_] := Module[{n = 1},
Table[While[Or @@ (Ceiling[n #1[[1]]] <
2 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
t = Flatten[Table[h/(1 + h^2), {h, 1, 60}]]
leastSeparator[t]
(* Peter J. C. Moses, Aug 01 2012 *)
CROSSREFS
Cf. A001000.
Sequence in context: A029612 A120165 A267970 * A139058 A242103 A328454
KEYWORD
nonn
STATUS
approved