login
A024826
Least m such that if r and s in {1/1, 1/3, 1/6,..., 1/C(n+1,2)} satisfy r < s, then r < k/m < s for some integer k.
2
2, 4, 7, 13, 31, 46, 64, 85, 145, 181, 226, 331, 397, 469, 638, 736, 841, 1089, 1225, 1378, 1711, 1901, 2311, 2542, 2784, 3313, 3601, 3901, 4564, 4915, 5685, 6091, 6526, 7441, 7937, 8977, 9538, 10116, 11341, 11989, 13358, 14080, 14821, 16401, 17221, 18964, 19867
OFFSET
2,1
COMMENTS
For a guide to related sequences, see A001000. - Clark Kimberling, Aug 07 2012
LINKS
MATHEMATICA
leastSeparator[seq_] := Module[{n = 1},
Table[While[Or @@ (Ceiling[n #1[[1]]] <
2 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
t = Flatten[Table[1/Binomial[h + 1, 2], {h, 1, 50}]]
leastSeparator[t]
CROSSREFS
Cf. A001000.
Sequence in context: A357931 A103104 A103480 * A291481 A102114 A102115
KEYWORD
nonn
STATUS
approved