login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A024823
Least m such that if r and s in {1/2, 1/5, 1/8,..., 1/(3n-1)}, satisfy r < s, then r < k/m < s for some integer k.
2
3, 6, 17, 25, 45, 57, 86, 103, 141, 185, 209, 262, 321, 386, 421, 495, 575, 661, 706, 801, 902, 1009, 1122, 1181, 1303, 1431, 1565, 1705, 1777, 1926, 2081, 2242, 2409, 2495, 2671, 2853, 3041, 3235, 3435, 3537, 3746, 3961, 4182, 4409, 4642, 4881, 5003, 5251, 5505
OFFSET
2,1
COMMENTS
For a guide to related sequences, see A001000. - Clark Kimberling, Aug 07 2012
LINKS
MATHEMATICA
leastSeparator[seq_] := Module[{n = 1},
Table[While[Or @@ (Ceiling[n #1[[1]]] <
2 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
t = Flatten[Table[1/(3 h - 1), {h, 1, 60}]];
leastSeparator[t]
CROSSREFS
Cf. A001000.
Sequence in context: A139476 A063618 A217084 * A024315 A235088 A369707
KEYWORD
nonn
STATUS
approved