

A063618


Smallest k such that 8^k has exactly n 2's in its decimal representation.


0



1, 3, 6, 17, 24, 31, 27, 41, 61, 59, 58, 87, 84, 123, 99, 89, 138, 116, 110, 189, 164, 162, 150, 156, 184, 197, 235, 234, 263, 277, 244, 216, 316, 268, 343, 295, 356, 270, 329, 325, 321, 334, 393, 452, 328, 375, 425, 462, 392, 469, 388
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Table of n, a(n) for n=0..50.


MATHEMATICA

a = {}; Do[k = 1; While[ Count[ IntegerDigits[8^k], 2] != n, k++ ]; a = Append[a, k], {n, 0, 50} ]; a
With[{twos=Table[DigitCount[8^n, 10, 2], {n, 500}]}, Flatten[Table[ Position[ twos, k, {1}, 1], {k, 0, 60}]]] (* Harvey P. Dale, Jul 18 2015 *)


CROSSREFS

Sequence in context: A173877 A101525 A139476 * A217084 A024823 A024315
Adjacent sequences: A063615 A063616 A063617 * A063619 A063620 A063621


KEYWORD

base,nonn


AUTHOR

Robert G. Wilson v, Aug 10 2001


EXTENSIONS

Name corrected by Jon E. Schoenfield, Jun 26 2018


STATUS

approved



