OFFSET
1,3
COMMENTS
Numbers n such that (570*10^n - 21)/9 is prime.
Numbers n such that digit 6 followed by n >= 0 occurrences of digit 3 followed by digit 1 is prime.
Numbers corresponding to terms <= 754 are certified primes.
a(28) > 10^5. - Robert Price, Sep 10 2015
REFERENCES
Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
LINKS
FORMULA
a(n) = A103032(n) - 1.
EXAMPLE
631 is prime, hence 1 is a term.
MATHEMATICA
Select[Range[0, 100000], PrimeQ[(570*10^# - 21)/9] &] (* Robert Price, Sep 10 2015 *)
PROG
(PARI) a=61; for(n=0, 1500, if(isprime(a), print1(n, ", ")); a=10*a+21)
(PARI) for(n=0, 1500, if(isprime((570*10^n-21)/9), print1(n, ", ")))
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 06 2004
EXTENSIONS
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 01 2008
a(24)-a(27) from Kamada data by Ray Chandler, Apr 30 2015
STATUS
approved