login
A024821
Least m such that if r and s in {1/sqrt(h): h = 1,2,...,n} satisfy r < s, then r < k/m < s for some integer k.
2
4, 5, 9, 11, 17, 21, 25, 32, 40, 43, 55, 61, 67, 73, 87, 94, 105, 113, 125, 137, 145, 153, 166, 179, 188, 202, 216, 226, 246, 256, 271, 281, 297, 307, 329, 340, 351, 368, 385, 403, 421, 439, 451, 469, 481, 500, 519, 538, 551, 564, 584, 604, 624, 645, 666, 687, 708, 722, 743
OFFSET
2,1
COMMENTS
For a guide to related sequences, see A001000. - Clark Kimberling, Aug 07 2012
LINKS
MATHEMATICA
leastSeparator[seq_] := Module[{n = 1},
Table[While[Or @@ (Ceiling[n #1[[1]]] <
2 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
t = Flatten[Table[1/Sqrt[h], {h, 1, 60}]];
leastSeparator[t]
(* Peter J. C. Moses, Aug 01 2012 *)
CROSSREFS
Cf. A001000.
Sequence in context: A118142 A193584 A155149 * A059610 A341783 A319606
KEYWORD
nonn
STATUS
approved