login
A024820
a(n) = least m such that if r and s in {1/2, 1/4, 1/6,..., 1/2n} satisfy r < s, then r < k/m < s for some integer k.
2
3, 5, 13, 19, 33, 41, 61, 85, 99, 129, 163, 181, 221, 265, 313, 339, 393, 451, 513, 545, 613, 685, 761, 841, 883, 969, 1059, 1153, 1251, 1301, 1405, 1513, 1625, 1741, 1861, 1923, 2049, 2179, 2313, 2451, 2593, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3699, 3873, 4051, 4233
OFFSET
2,1
COMMENTS
For a guide to related sequences, see A001000. - Clark Kimberling, Aug 07 2012
LINKS
MATHEMATICA
leastSeparator[t_] := Module[{n = 1},
Table[While[Or @@ (Ceiling[n #1[[1]]] <
2 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
Partition[Take[t, k], 2, 1], n++]; n, {k, 2, Length[t]}]];
t = Flatten[{1/(2*Range[60])}]
leastSeparator[t]
CROSSREFS
Cf. A001000.
Sequence in context: A019358 A081353 A238092 * A360884 A038941 A141215
KEYWORD
nonn
STATUS
approved