login
A024824
a(n) = least m such that if r and s in {1/3, 1/6, 1/9,..., 1/3n} satisfy r < s, then r < k/m < s for some integer k.
2
4, 7, 19, 28, 49, 61, 91, 127, 148, 193, 244, 271, 331, 397, 469, 508, 589, 676, 769, 817, 919, 1027, 1141, 1261, 1324, 1453, 1588, 1729, 1876, 1951, 2107, 2269, 2437, 2611, 2791, 2884, 3073, 3268, 3469, 3676, 3889, 3997, 4219, 4447, 4681, 4921, 5167, 5419, 5548
OFFSET
2,1
COMMENTS
For a guide to related sequences, see A001000. - Clark Kimberling, Aug 07 2012
LINKS
MATHEMATICA
leastSeparator[seq_] := Module[{n = 1},
Table[While[Or @@ (Ceiling[n #1[[1]]] <
2 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
t = Flatten[Table[1/(3 n), {n, 1, 60}]];
leastSeparator[t]
(* Peter J. C. Moses, Aug 01 2012 *)
CROSSREFS
Cf. A001000.
Sequence in context: A231374 A173017 A063605 * A164265 A174465 A006381
KEYWORD
nonn
STATUS
approved