login
A024825
a(n) = least m such that if r and s in {1/4, 1/8, 1/12,..., 1/4n} satisfy r < s, then r < k/m < s for some integer k.
2
5, 9, 25, 37, 65, 81, 121, 169, 197, 257, 325, 361, 441, 529, 625, 677, 785, 901, 1025, 1089, 1225, 1369, 1521, 1681, 1765, 1937, 2117, 2305, 2501, 2601, 2809, 3025, 3249, 3481, 3721, 3845, 4097, 4357, 4625, 4901, 5185, 5329, 5625, 5929, 6241
OFFSET
2,1
COMMENTS
For a guide to related sequences, see A001000. - Clark Kimberling, Aug 07 2012
LINKS
MATHEMATICA
leastSeparator[seq_] := Module[{n = 1},
Table[While[Or @@ (Ceiling[n #1[[1]]] <
2 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
t = Flatten[Table[1/(4 h), {h, 1, 60}]];
leastSeparator[t]
(* Peter J. C. Moses, Aug 01 2012 *)
CROSSREFS
Cf. A001000.
Sequence in context: A269918 A354775 A273827 * A147074 A147192 A259665
KEYWORD
nonn
EXTENSIONS
Corrected and edited by Clark Kimberling, Aug 07 2012
STATUS
approved