login
A345814
Numbers that are the sum of six fourth powers in exactly two ways.
8
261, 276, 291, 341, 356, 421, 516, 531, 596, 771, 885, 900, 965, 1140, 1361, 1509, 1556, 1571, 1636, 1811, 2180, 2596, 2611, 2661, 2691, 2706, 2721, 2741, 2756, 2771, 2786, 2836, 2931, 2946, 2961, 3011, 3026, 3091, 3186, 3201, 3220, 3266, 3285, 3300, 3315
OFFSET
1,1
COMMENTS
Differs from A345559 at term 25 because 2676 = 1^4 + 1^4 + 2^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 3^4 + 6^4 + 6^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4.
LINKS
EXAMPLE
276 is a term because 276 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 = 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 6):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 2])
for x in range(len(rets)):
print(rets[x])
KEYWORD
nonn
AUTHOR
STATUS
approved