login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are the sum of six fourth powers in exactly four ways.
8

%I #8 Mar 11 2023 14:04:28

%S 6626,6691,6866,9251,9491,10115,10706,10786,11555,12595,14225,14691,

%T 14771,15315,15330,15570,16051,16595,16660,16675,16850,17090,17091,

%U 17236,17316,17331,17346,17860,17875,17940,17955,18195,18786,18851,19155,19170,19475,19490

%N Numbers that are the sum of six fourth powers in exactly four ways.

%C Differs from A345561 at term 16 because 15395 = 1^4 + 1^4 + 1^4 + 6^4 + 8^4 + 10^4 = 1^4 + 2^4 + 5^4 + 8^4 + 8^4 + 9^4 = 3^4 + 4^4 + 4^4 + 7^4 + 7^4 + 10^4 = 3^4 + 5^4 + 7^4 + 8^4 + 8^4 + 8^4 = 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 11^4.

%H Sean A. Irvine, <a href="/A345816/b345816.txt">Table of n, a(n) for n = 1..10000</a>

%e 6691 is a term because 6691 = 1^4 + 1^4 + 1^4 + 6^4 + 6^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 9^4 = 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 = 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4.

%t Select[Range[20000],Count[PowersRepresentations[#,6,4],_?(#[[1]]>0&)]==4&] (* _Harvey P. Dale_, Mar 11 2023 *)

%o (Python)

%o from itertools import combinations_with_replacement as cwr

%o from collections import defaultdict

%o keep = defaultdict(lambda: 0)

%o power_terms = [x**4 for x in range(1, 1000)]

%o for pos in cwr(power_terms, 6):

%o tot = sum(pos)

%o keep[tot] += 1

%o rets = sorted([k for k, v in keep.items() if v == 4])

%o for x in range(len(rets)):

%o print(rets[x])

%Y Cf. A344355, A345561, A345766, A345815, A345817, A345826, A346359.

%K nonn

%O 1,1

%A _David Consiglio, Jr._, Jun 26 2021