login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078927
Smallest s for which there are exactly n primitive Pythagorean triangles with perimeter 2s; i.e., smallest s such that A078926(s) = n.
3
6, 858, 7140, 158730, 771342, 3120180, 9699690, 31651620, 119584290, 198843645, 229474245, 406816410, 281291010, 1412220810, 1673196525, 3457939485, 3234846615, 4360010655, 4573403835, 4127218095, 11532931410, 12929686770, 101268227775
OFFSET
1,1
COMMENTS
A Pythagorean triangle is a right triangle whose edge lengths are all integers; such a triangle is 'primitive' if the lengths are relatively prime.
LINKS
Derek J. C. Radden and Peter T. C. Radden, Table of n, a(n) for n=1..39 (terms 1 through 15 were computed by Derek J. C. Radden)
EXAMPLE
a(2)=858; the primitive Pythagorean triangles with edge lengths (364, 627, 725) and (195, 748, 773) both have perimeter 2*858 = 1716.
MATHEMATICA
oddpart[n_] := If[OddQ[n], n, oddpart[n/2]]; ct[p_] := Length[Select[Divisors[oddpart[p/2]], p/2<#^2<p&&GCD[ #, p/2/# ]==1&]]; a[n_] := For[s=1, True, s++, If[ct[2s]==n, Return[s]]]
CROSSREFS
a(n) = A078928(n)/2. Cf. A078926.
Sequence in context: A378386 A281690 A201141 * A064430 A332186 A279304
KEYWORD
nonn
AUTHOR
Dean Hickerson, Dec 15 2002
EXTENSIONS
a(8) from Robert G. Wilson v, Dec 19 2002
a(9)-a(15) from Derek J C Radden, Dec 22 2012
a(16)-a(23) from Peter T. C. Radden, Dec 29 2012
STATUS
approved