

A078928


Smallest p for which there are exactly n primitive Pythagorean triangles with perimeter p; i.e., smallest p such that A070109(p) = n.


2



12, 1716, 14280, 317460, 1542684, 6240360, 19399380, 63303240, 239168580, 397687290, 458948490, 813632820, 562582020, 2824441620, 3346393050, 6915878970, 6469693230, 8720021310, 9146807670, 8254436190, 23065862820, 25859373540, 202536455550
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

A Pythagorean triangle is a right triangle whose edge lengths are all integers; such a triangle is 'primitive' if the lengths are relatively prime.
Least perimeter common to exactly n primitive Pythagorean triangles.  Lekraj Beedassy, May 14 2004


LINKS

Derek J. C. Radden and Peter T. C. Radden, Table of n, a(n) for n=1..39 (terms 1 through 15 were computed by Derek J. C. Radden)
C. B. T. (Reviewer), Review of Andrew S. Anema, A table of primitive Pythagorean triangle with identical perimeters, Mathematical Tables and Other Aids to Computation, Vol. 10, No. 53 (Jan., 1956), pp. 3536.


EXAMPLE

a(2)=1716; the primitive Pythagorean triangles with edge lengths (364, 627, 725) and (195, 748, 773) both have perimeter 1716.


MATHEMATICA

oddpart[n_] := If[OddQ[n], n, oddpart[n/2]]; ct[p_] := Length[Select[Divisors[oddpart[p/2]], p/2<#^2<p&&GCD[ #, p/2/# ]==1&]]; a[n_] := For[per=2, True, per+=2, If[ct[per]==n, Return[per]]]


CROSSREFS

a(n) = 2*A078927(n). Cf. A070109.
Sequence in context: A034280 A146201 A009120 * A202968 A013717 A252767
Adjacent sequences: A078925 A078926 A078927 * A078929 A078930 A078931


KEYWORD

nonn


AUTHOR

Dean Hickerson, Dec 15 2002


EXTENSIONS

a(8) from Robert G. Wilson v, Dec 19 2002
a(9)a(15) from Derek J C Radden, Dec 22 2012
a(16)a(39) from Peter T. C. Radden, Dec 29 2012


STATUS

approved



