login
A232818
Triangle of coefficients of polynomials equal permanent of the n X n matrix [1,2,...,n; n*x+1, n*x+2, ..., n*x+n; ...; (n-1)*n*x+1, (n-1)*n*x+2, ...,(n-1)*n*x+n].
3
1, 6, 4, 216, 198, 36, 23040, 24640, 7200, 576, 5400000, 6375000, 2362500, 328800, 14400, 2351462400, 2982873600, 1285956000, 238533120, 19051200, 518400, 1707698764800, 2291162509440, 1100516981760, 245735819280, 27025656000, 1383117120, 25401600
OFFSET
1,2
COMMENTS
The degree of n-th polynomial is n-1.
Its leading coefficient is T(n,1) = n^n*(n-1)!^2*(n+1)/2. - M. F. Hasler, Dec 01 2013
FORMULA
P_n(x) = (-1)^n * Sum_{k=0..n-1} c_k(n) * x^k, where c_k(n)= n^k * Stirling1(n,n-k) * Stirling1(n+1,k+1) * (n-k)! * k!.
P_n(1) = A232773; P_n(0) = n!^2, P_n(1/n) = A204248(n) is permanent of n X n Toeplitz matrix with the first row n,n-1,...,1 (see our comment in A204248).
EXAMPLE
1
6*x + 4
216*x^2 + 198*x + 36
23040*x^3 + 24640*x^2 + 7200*x + 576
......
MATHEMATICA
p[n_, x_]:=(-1)^n Sum[n^k x^k StirlingS1[n, n-k]StirlingS1[n+1, k+1](n-k)!k!, {k, 0, n-1}]; Flatten[Table[Reverse[CoefficientList[p[n, x], x]], {n, 8}]] (* Peter J. C. Moses, Nov 30 2013 *)
PROG
(PARI) P(n)=(-1)^n*sum(k=0, n-1, n^k*x^k*stirling(n, n-k)*stirling(n+1, k+1)*(n-k)!*k!)
apply(t->Vec(t), vector(7, n, P(n))) /* M. F. Hasler, Dec 01 2013 */
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Vladimir Shevelev, Nov 30 2013
EXTENSIONS
More terms from Peter J. C. Moses, Nov 30 2013
STATUS
approved