OFFSET
1,2
COMMENTS
The degree of n-th polynomial is n-1.
Its leading coefficient is T(n,1) = n^n*(n-1)!^2*(n+1)/2. - M. F. Hasler, Dec 01 2013
LINKS
G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
FORMULA
EXAMPLE
1
6*x + 4
216*x^2 + 198*x + 36
23040*x^3 + 24640*x^2 + 7200*x + 576
......
MATHEMATICA
p[n_, x_]:=(-1)^n Sum[n^k x^k StirlingS1[n, n-k]StirlingS1[n+1, k+1](n-k)!k!, {k, 0, n-1}]; Flatten[Table[Reverse[CoefficientList[p[n, x], x]], {n, 8}]] (* Peter J. C. Moses, Nov 30 2013 *)
PROG
(PARI) P(n)=(-1)^n*sum(k=0, n-1, n^k*x^k*stirling(n, n-k)*stirling(n+1, k+1)*(n-k)!*k!)
apply(t->Vec(t), vector(7, n, P(n))) /* M. F. Hasler, Dec 01 2013 */
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Vladimir Shevelev, Nov 30 2013
EXTENSIONS
More terms from Peter J. C. Moses, Nov 30 2013
STATUS
approved