login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334806
a(n) = Product_{d|n} lcm(tau(d), sigma(d)) where tau(k) is the number of divisors of k (A000005) and sigma(k) is the sum of divisors of k (A000203).
0
1, 6, 4, 126, 6, 288, 8, 7560, 156, 1296, 12, 508032, 14, 1152, 576, 1171800, 18, 876096, 20, 1143072, 1024, 2592, 24, 3657830400, 558, 7056, 6240, 4064256, 30, 107495424, 32, 147646800, 2304, 11664, 2304, 1265709908736, 38, 7200, 3136, 24690355200, 42
OFFSET
1,2
FORMULA
a(p) = p + 1 for p = odd primes (A065091).
EXAMPLE
a(6) = lcm(tau(1), sigma(1)) * lcm(tau(2), sigma(2)) * lcm(tau(3), sigma(3)) * lcm(tau(6), sigma(6)) = lcm(1, 1) * lcm(2, 3) * lcm(2, 4) * lcm(4, 12) = 1 * 6 * 4 * 12 = 288.
MATHEMATICA
a[n_] := Product[LCM[DivisorSigma[0, d], DivisorSigma[1, d]], {d, Divisors[n]}]; Array[a, 41] (* Amiram Eldar, Jun 27 2020 *)
PROG
(Magma) [&*[LCM(#Divisors(d), &+Divisors(d)): d in Divisors(n)]: n in [1..100]]
(PARI) a(n) = my(d=divisors(n)); prod(k=1, #d, lcm(numdiv(d[k]), sigma(d[k]))); \\ Michel Marcus, Jun 27 2020
CROSSREFS
Cf. A334784 (Sum_{d|n} lcm(tau(d), sigma(d))), A334729 (Product_{d|n} gcd(tau(d), sigma(d))).
Cf. A000005 (tau(n)), A000203 (sigma(n)), A009278 (lcm(tau(n), sigma(n))).
Sequence in context: A239861 A266850 A109873 * A014403 A232818 A355767
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jun 26 2020
STATUS
approved