login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334809
a(n) = Product_{d|n} lcm(sigma(d), pod(d)) where sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).
0
1, 6, 12, 336, 30, 2592, 56, 322560, 4212, 162000, 132, 1755758592, 182, 395136, 648000, 10239344640, 306, 68976790272, 380, 1524096000000, 9483264, 3449952, 552, 2796089100573081600, 116250, 15502032, 122821920, 485745426432, 870, 102036672000000000, 992
OFFSET
1,2
FORMULA
a(p) = p^2 + p for p = primes (A000040).
EXAMPLE
a(6) = lcm(sigma(1), pod(1)) * lcm(sigma(2), pod(2)) * lcm(sigma(3), pod(3)) * lcm(sigma(6), pod(6)) = lcm(1, 1) * lcm(3, 2) * lcm(4, 3) * lcm(12, 36) = 1 * 6 * 12 * 36 = 2592.
PROG
(Magma) [&*[LCM(&+Divisors(d), &*Divisors(d)): d in Divisors(n)]: n in [1..100]]
CROSSREFS
Cf. A334794 (Sum_{d|n} lcm(sigma(d), pod(d))), A334731 (Product_{d|n} gcd(sigma(d), pod(d))).
Cf. A000203(sigma(n)), A007955 (pod(n)), A324529 (lcm(sigma(n), pod(n))).
Sequence in context: A051784 A158046 A097174 * A325030 A191415 A259130
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Aug 01 2020
STATUS
approved