login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A232773 Permanent of the n X n matrix with numbers 1,2,...,n^2 in order across rows. 5
1, 1, 10, 450, 55456, 14480700, 6878394720, 5373548250000, 6427291156586496, 11157501095973529920, 26968983444160450560000, 87808164603589940623344000, 374818412822626584819196231680, 2050842983500342507649178541536000, 14112022767608502582976078751055052800 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Max Alekseyev, Table of n, a(n) for n = 0..100

FORMULA

a(n) = (-1)^n * Sum_{k=0..n} n^k * Stirling1(n,n-k) * Stirling1(n+1,k+1) * (n-k)! * k!. - Max Alekseyev, Nov 30 2013

Limit n->infinity a(n)^(1/n)/n^3 = exp(-2). - Vaclav Kotesovec, Nov 30 2013

a(n) = A232788(n)*n!!, where n!! = A006882(n) is the double-factorial. - M. F. Hasler, Nov 30 2013

MAPLE

a:= n-> (-1)^n*add(n^k*Stirling1(n, n-k)*

        Stirling1(n+1, k+1)*(n-k)!*k!, k=0..n):

seq(a(n), n=0..20);  # Alois P. Heinz, Dec 02 2013

MATHEMATICA

Table[(-1)^n * Sum[n^k * StirlingS1[n, n-k] * StirlingS1[n+1, k+1] * (n-k)! * k!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec after Max Alekseyev, Nov 30 2013 *)

PROG

(PARI) a(n) = (-1)^n * sum(k=0, n, n^k * stirling(n, n-k) * stirling(n+1, k+1) * (n-k)! * k! ) /* Max Alekseyev, Nov 30 2013 */

CROSSREFS

Cf. A114533, A232788, A008277, A232818, A204248, A094638.

Sequence in context: A177391 A304289 A217523 * A221043 A337757 A288548

Adjacent sequences:  A232770 A232771 A232772 * A232774 A232775 A232776

KEYWORD

nonn

AUTHOR

Franklin T. Adams-Watters, Nov 30 2013

EXTENSIONS

More terms from W. Edwin Clark, Nov 30 2013

a(0)=1 prepended by Alois P. Heinz, Dec 02 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 07:06 EDT 2022. Contains 354112 sequences. (Running on oeis4.)