login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A221043 The hyper-Wiener index of the Bethe cactus lattice graph D_n defined pictorially in the Hosoya - Balasubramanian reference. 1
10, 457, 11788, 223306, 3527782, 49658659, 646456696, 7958918644, 94000489378, 1075247030365, 11991524116804, 131012134626814, 1407240945512638, 14901372361780855, 155885329216404592, 1613748977026119016, 16554187553043529402, 168462466522953130609 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

K. Balasubramanian, Recent developments in tree-pruning methods and polynomials for cactus graphs and trees, J. Math. Chemistry, 4 (1990) 89-102.

H. Hosoya, K. Balasubramanian, Exact dimer statistics and characteristic polynomials of cacti lattices, Theor. Chim. Acta 76 (1989) 315-329.

LINKS

Table of n, a(n) for n=1..18.

Index entries for linear recurrences with constant coefficients, signature (37,-549,4185,-17523,40095,-45927,19683).

FORMULA

a(n) = -(7/8)+3^n*(2*n^2-(9/4)*n-10)+3^(2*n)*(4*n^2-(41/4)*n+(87/8)).

G.f.: x*(243*x^4+3807*x^3-369*x^2-87*x-10) / ((x-1)*(3*x-1)^3*(9*x-1)^3). [Colin Barker, Jan 01 2013]

MAPLE

a := proc (n) options operator, arrow: -7/8+3^n*(2*n^2-(9/4)*n-10)+3^(2*n)*(4*n^2-(41/4)*n+87/8) end proc: seq(a(n), n = 1 .. 18);

CROSSREFS

Cf. A221042.

Sequence in context: A304289 A217523 A232773 * A337757 A288548 A289030

Adjacent sequences:  A221040 A221041 A221042 * A221044 A221045 A221046

KEYWORD

nonn,easy

AUTHOR

Emeric Deutsch, Dec 30 2012

EXTENSIONS

Offset changed from 0 to 1 by Bruno Berselli, Dec 30 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 04:26 EST 2022. Contains 350410 sequences. (Running on oeis4.)