The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A289030 Number of Dyck paths having exactly n peaks in each of the levels 1,2,3 and no other peaks. 2
 1, 10, 471, 27076, 1713955, 114751470, 7969151855, 567878871304, 41247976697019, 3040572724077010, 226777538499783271, 17076122335343354700, 1296037531424347164115, 99025149551454886937590, 7609414766853344476768095, 587623058661705739915402256 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The semilengths of Dyck paths counted by a(n) are elements of the integer interval [3*n+2, 6*n] for n>0. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..523 Wikipedia, Counting lattice paths EXAMPLE . a(1) = 10: . .        /\        /\          /\        /\ .     /\/  \      /  \/\    /\/  \      /  \/\ .  /\/      \  /\/      \  /      \/\  /      \/\ . .                /\        /\                /\ .           /\  /  \      /  \  /\    /\    /  \ .        /\/  \/    \  /\/    \/  \  /  \/\/    \ . .              /\        /\            /\ .         /\  /  \      /  \    /\    /  \  /\ .        /  \/    \/\  /    \/\/  \  /    \/  \/\  . MAPLE b:= proc(n, k, j, v) option remember; `if`(n=j, `if`(v=1, 1, 0),       `if`(v<2, 0, add(b(n-j, k, i, v-1)*(binomial(i, k)*        binomial(j-1, i-1-k)), i=1..min(j+k, n-j))))     end: a:= n-> `if`(n=0, 1, add(b(w, n\$2, 3), w=3*n+2..6*n)): seq(a(n), n=0..15); MATHEMATICA b[n_, k_, j_, v_]:=b[n, k, j, v]=If[n==j, If[v==1, 1, 0], If[v<2, 0, Sum[b[n - j, k, i, v - 1] Binomial[i, k] Binomial[j - 1, i - 1 - k], {i, Min[j + k, n - j]}]]]; a[n_]:=If[n==0, 1, Sum[b[w, n, n, 3], {w, 3n + 2, 6n}]]; Table[a[n], {n, 0, 15}] (* Indranil Ghosh, Jul 06 2017, after maple code *) CROSSREFS Row n=3 of A288972. Sequence in context: A221043 A337757 A288548 * A323205 A257133 A159533 Adjacent sequences:  A289027 A289028 A289029 * A289031 A289032 A289033 KEYWORD nonn AUTHOR Alois P. Heinz, Jun 22 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 21:44 EDT 2022. Contains 354071 sequences. (Running on oeis4.)