login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337757
G.f. A(x) satisfies: 1 = Sum_{n>=0} (n+1)*(n+2)*(n+3)/3! * 4^n * ((1+x)^n - A(x))^n.
4
1, 1, 10, 460, 30250, 2488776, 240707480, 26452491760, 3233941091480, 433611348176880, 63118887464611936, 9899442124162104960, 1662993951689377716800, 297806177944353392091200, 56626969607275080551099520, 11394470658417110387020266496, 2419172929237326590857901776560, 540511078482106447677809541679680
OFFSET
0,3
COMMENTS
In general, the following sums are equal:
(1) Sum_{n>=0} binomial(n+k-1, n) * r^n * (p + q^n)^n,
(2) Sum_{n>=0} binomial(n+k-1, n) * r^n * q^(n^2) / (1 - r*p*q^n)^(n+k),
for any fixed integer k; here, k = 4 with r = 4, p = -A(x), q = (1+x).
LINKS
FORMULA
G.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} C(n+3,3) * 4^n * ( (1+x)^n - A(x) )^n.
(2) 1 = Sum_{n>=0} C(n+3,3) * 4^n * (1+x)^(n^2) / (1 + 4*(1+x)^n*A(x))^(n+4).
a(n) ~ c * (1 + 4*exp(1/r))^n * r^(2*n) * n! * n^(5/2), where r = 0.95894043087329419322124137165060249611787608513866855417024... is the root of the equation exp(1/r) * (1 + 1/(r*LambertW(-exp(-1/r)/r))) = -1/4 and c = 0.0012636042138... - Vaclav Kotesovec, Oct 13 2020
EXAMPLE
G.f.: A(x) = 1 + x + 10*x^2 + 460*x^3 + 30250*x^4 + 2488776*x^5 + 240707480*x^6 + 26452491760*x^7 + 3233941091480*x^8 + ...
where
1 = 1 + 4*4*((1+x) - A(x)) + 10*4^2*((1+x)^2 - A(x))^2 + 20*4^3*((1+x)^3 - A(x))^3 + 35*4^4*((1+x)^4 - A(x))^4 + 56*4^5*((1+x)^5 - A(x))^5 + 84*4^6*((1+x)^6 - A(x))^6 + 120*4^7*((1+x)^7 - A(x))^7 + ... + C(n+3,3)*4^n*((1+x)^n - A(x))^n + ...
Also,
1 = 1/(1 + 4*A(x))^4 + 4*4*(1+x)/(1 + 4*(1+x)*A(x))^5 + 10*4^2*(1+x)^4/(1 + (1+x)^2*A(x))^6 + 20*4^3*(1+x)^9/(1 + 4*(1+x)^3*A(x))^7 + 35*4^4*(1+x)^16/(1 + 4*(1+x)^4*A(x))^8 + 56*4^5*(1+x)^25/(1 + 4*(1+x)^5*A(x))^9 + 84*4^6*(1+x)^36/(1 + 4*(1+x)^6*A(x))^10 + ... + C(n+3,3)*4^n*(1+x)^(n^2)/(1 + 4*(1+x)^n*A(x))^(n+4) + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, (m+1)*(m+2)*(m+3)/3! * 4^m * ((1+x)^m - Ser(A))^m ) )[#A]/16 ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 18 2020
STATUS
approved