login
A232772
Expansion of (psi(x)^2 / (phi(-x) * phi(x^2)))^2 in powers of x where phi(), psi() are Ramanujan theta functions.
4
1, 8, 30, 80, 197, 472, 1046, 2160, 4306, 8360, 15712, 28656, 51127, 89552, 153926, 259904, 432336, 709728, 1150142, 1841200, 2915546, 4570904, 7097622, 10921184, 16664073, 25228176, 37907758, 56553936, 83806768, 123405752, 180611558, 262799248, 380275604
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/2) * (eta(q^2)^7 * eta(q^8)^2 / (eta(q)^4 * eta(q^4)^5))^2 in powers of q.
Euler transform of period 8 sequence [ 8, -6, 8, 4, 8, -6, 8, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 8 g(t) where q = eqp(2 Pi i t) and g() is the g.f. of A233458.
a(n) = A215349(2*n + 1) = A215348(2*n + 1). 2 * a(n) = A212318(2*n + 1) = - A232358(2*n + 1).
a(n) ~ exp(sqrt(2*n)*Pi) / (2^(17/4) * n^(3/4)). - Vaclav Kotesovec, Oct 13 2015
EXAMPLE
G.f. = 1 + 8*x + 30*x^2 + 80*x^3 + 197*x^4 + 472*x^5 + 1046*x^6 + 2160*x^7 + ...
G.f. = q + 8*q^3 + 30*q^5 + 80*q^7 + 197*q^9 + 472*q^11 + 1046*q^13 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q^(1/2)]^4 / (16 q^(1/2)) / (EllipticTheta[ 4, 0, q] EllipticTheta[ 3, 0, q^2])^2, {q, 0, n}]
nmax=60; CoefficientList[Series[Product[((1-x^k)^3 * (1+x^k)^7 * (1+x^(4*k))^2 / (1-x^(4*k))^3)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 13 2015 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^7 * eta(x^8 + A)^2 / (eta(x + A)^4 * eta(x^4 + A)^5))^2, n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Nov 30 2013
STATUS
approved