login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232769
Numbers n not divisible by 9 such that n divides 10^n - 1 (A014950).
2
1, 3, 111, 4107, 151959, 5622483, 22494039, 208031871, 225121209, 832279443, 7697179227, 8329484733, 27486820443, 30794339391, 92366302683, 123199851603, 230915528769, 284795631399, 308190935121, 1017012356391
OFFSET
1,2
COMMENTS
The above terms reduced modulo 9 yield: 1, 3, 3, 3, 3, 3, 6, 3, 6, 6, 3, 6, 3, 6, 3, 3, 3, 3, 6, 3, 6, …, .
The only primes less than a billion which can divide members of this sequence are 3, 37, 5477, 607837, 1519591, 2028119, 15195911, 18235093, 44988079, 74202397, 247629013, 337349203, 395397319, 462411133, and 674699071. - Charles R Greathouse IV, Dec 03 2013
LINKS
MATHEMATICA
k = 3; lst = {1}; While[k < 10^10 + 1, If[ PowerMod[10, k, k] == 1, AppendTo[ lst, k]; Print@ k]; k += 3; If[ PowerMod[ 10, k, k] == 1, AppendTo[ lst, k]; Print@ k]; k += 6]; lst
PROG
(PARI) is(n)=n%9 && Mod(10, n)^n==1 \\ Charles R Greathouse IV, Dec 03 2013
(PARI) forstep(n=1, 1e8, [2, 4, 4, 2, 4, 2, 2, 2, 6, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 6, 2, 2, 2, 4, 2, 4, 4, 2, 2], if(Mod(10, n)^n==1, print1(n", "))) \\ Charles R Greathouse IV, Dec 03 2013
CROSSREFS
Cf. A014950.
Sequence in context: A111091 A301612 A180765 * A066138 A114207 A128684
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(22)-a(26) from Ray Chandler, Dec 11 2013
B-file extended through a(55) by Ray Chandler, Dec 24 2013
STATUS
approved