

A111091


Successive generations of a Kolakoski(3,1) rule starting with 1 (see A066983).


0




OFFSET

1,2


COMMENTS

Terms are palindromic. If b_3(n) denotes the number of 3's in a(n) then b(n) satisfies the recursion: b_3(1)=0, b_3(2)=1 and b_3(n) = b_3(n1) + b_3(n2) + (1)^n so that b_3(2n)=A055588(n) and b_3(2n+1)=A027941(n). If b_1(n) denotes the number of 1's: b_1(1)=1, b_1(2)=0 and b_1(n) = b_1(n1) + b_1(n2)  2*(1)^n so that b_1(2n)=A004146(n) and b_1(2n+1) = A000032(n2)  2.


LINKS



FORMULA

As n grows, a(2n1) converges toward A095345 (read as a word) and a(2n) converges toward A095346.


EXAMPLE

1 > 3 > 111 > 313 > 1113111 > 313111313


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



