login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066138
a(n) = 10^(2*n) + 10^n + 1.
12
3, 111, 10101, 1001001, 100010001, 10000100001, 1000001000001, 100000010000001, 10000000100000001, 1000000001000000001, 100000000010000000001, 10000000000100000000001, 1000000000001000000000001, 100000000000010000000000001, 10000000000000100000000000001, 1000000000000001000000000000001
OFFSET
0,1
COMMENTS
Palindromes whose digit sum is 3.
Essentially the same as A135577. - R. J. Mathar Apr 29 2008
From Peter Bala, Sep 25 2015: (Start)
For n >= 1, the simple continued fraction expansion of sqrt(a(n)) = [10^n; 1, 1, 2/3*(10^n - 1), 1, 1, 2*10^n, ...] has period 6. As n increases, the expansion has the large partial quotients 2/3*(10^n - 1) and 2*10^n.
For n >= 1, the continued fraction expansion of sqrt(a(2*n))/a(n) = [0; 1, 10^n - 1, 1, 1, 1/3*(10^n - 4), 1, 4, 1, 1/3*(10^n - 4), 1, 1, 10^n - 1, 2, 10^n - 1, ...] has pre-period of length 3 and period 12 beginning 1, 1, 1/3*(10^n - 4), .... As n increases, the expansion has the large partial quotients 10^n - 1 and 1/3*(10^n - 4).
A theorem of Kuzmin in the measure theory of continued fractions says that large partial quotients are the exception in continued fraction expansions.
Empirically, we also see exceptionally large partial quotients in the continued fraction expansions of the m-th root of the numbers a(m*n), for m >= 3. For example, it appears that the continued fraction expansion of a(3*n)^(1/3), for n >= 2, begins [10^(2*n); 3*10^n - 1, 1, 0.5*10^(2*n) - 1, 1.44*10^n - 1, 1, ...]. Cf. A000533, A002283 and A168624. (End)
FORMULA
A168624(n) = a(2*n)/a(n). - Peter Bala, Sep 24 2015
G.f.: (3 - 222*x + 1110*x^2)/((1 - 100*x)*(1 - 10*x)*(1 - x)). - Vincenzo Librandi, Sep 27 2015
From Colin Barker, Sep 27 2015: (Start)
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
G.f.: -3*(370*x^2-74*x+1)/((x-1)*(10*x-1)*(100*x-1)). (End)
From Elmo R. Oliveira, Aug 27 2024: (Start)
E.g.f.: exp(x)*(exp(99*x) + exp(9*x) + 1).
a(n) = 3*A074992(n). (End)
EXAMPLE
From Peter Bala, Sep 25 2015: (Start)
Simple continued fraction expansions showing large partial quotients:
a(9)^(1/3) =[1000000; 2999, 1, 499999, 1439, 1, 2582643, 1, 1, 1, 2, 3, 3, ...].
a(20)^(1/4) = [10000000000; 39999999999, 1, 3999999999, 16949152542, 2, 1, 2, 6, 1, 4872106, 3, 9, 2, 3, ...].
a(25)^(1/5) = [10000000000; 4999999999999999, 1, 3333333332, 2, 1, 217391304347825, 2, 2, 1, 1, 1, 2, 1, 23980814, 1, 1, 1, 1, 1, 7, ...]. (End)
MATHEMATICA
Table[10^(2 n) + 10^n + 1, {n, 0, 15}] (* Michael De Vlieger, Sep 27 2015 *)
CoefficientList[Series[(3 - 222 x + 1110 x^2)/((1 - 100 x) (1 - 10 x) (1 - x)), {x, 0, 33}], x] (* Vincenzo Librandi, Sep 27 2015 *)
PROG
(PARI) a(n) = { 10^(2*n) + 10^n + 1 } \\ Harry J. Smith, Feb 02 2010
(PARI) Vec(-3*(370*x^2-74*x+1)/((x-1)*(10*x-1)*(100*x-1)) + O(x^20)) \\ Colin Barker, Sep 27 2015
(Magma) [10^(2*n) + 10^n + 1: n in [0..20]]; // Vincenzo Librandi, Sep 27 2015
KEYWORD
nonn,base,easy
AUTHOR
Henry Bottomley, Dec 07 2001
EXTENSIONS
Offset changed from 1 to 0 by Harry J. Smith, Feb 02 2010
More terms from Michael De Vlieger, Sep 27 2015
STATUS
approved