Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Dec 08 2024 20:41:26
%S 3,111,10101,1001001,100010001,10000100001,1000001000001,
%T 100000010000001,10000000100000001,1000000001000000001,
%U 100000000010000000001,10000000000100000000001,1000000000001000000000001,100000000000010000000000001,10000000000000100000000000001,1000000000000001000000000000001
%N a(n) = 10^(2*n) + 10^n + 1.
%C Palindromes whose digit sum is 3.
%C Essentially the same as A135577. - _R. J. Mathar_ Apr 29 2008
%C From _Peter Bala_, Sep 25 2015: (Start)
%C For n >= 1, the simple continued fraction expansion of sqrt(a(n)) = [10^n; 1, 1, 2/3*(10^n - 1), 1, 1, 2*10^n, ...] has period 6. As n increases, the expansion has the large partial quotients 2/3*(10^n - 1) and 2*10^n.
%C For n >= 1, the continued fraction expansion of sqrt(a(2*n))/a(n) = [0; 1, 10^n - 1, 1, 1, 1/3*(10^n - 4), 1, 4, 1, 1/3*(10^n - 4), 1, 1, 10^n - 1, 2, 10^n - 1, ...] has pre-period of length 3 and period 12 beginning 1, 1, 1/3*(10^n - 4), .... As n increases, the expansion has the large partial quotients 10^n - 1 and 1/3*(10^n - 4).
%C A theorem of Kuzmin in the measure theory of continued fractions says that large partial quotients are the exception in continued fraction expansions.
%C Empirically, we also see exceptionally large partial quotients in the continued fraction expansions of the m-th root of the numbers a(m*n), for m >= 3. For example, it appears that the continued fraction expansion of a(3*n)^(1/3), for n >= 2, begins [10^(2*n); 3*10^n - 1, 1, 0.5*10^(2*n) - 1, 1.44*10^n - 1, 1, ...]. Cf. A000533, A002283 and A168624. (End)
%H Harry J. Smith, <a href="/A066138/b066138.txt">Table of n, a(n) for n=0..100</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (111,-1110,1000).
%F A168624(n) = a(2*n)/a(n). - _Peter Bala_, Sep 24 2015
%F G.f.: (3 - 222*x + 1110*x^2)/((1 - 100*x)*(1 - 10*x)*(1 - x)). - _Vincenzo Librandi_, Sep 27 2015
%F From _Colin Barker_, Sep 27 2015: (Start)
%F a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
%F G.f.: -3*(370*x^2-74*x+1)/((x-1)*(10*x-1)*(100*x-1)). (End)
%F From _Elmo R. Oliveira_, Aug 27 2024: (Start)
%F E.g.f.: exp(x)*(exp(99*x) + exp(9*x) + 1).
%F a(n) = 3*A074992(n). (End)
%e From _Peter Bala_, Sep 25 2015: (Start)
%e Simple continued fraction expansions showing large partial quotients:
%e a(9)^(1/3) =[1000000; 2999, 1, 499999, 1439, 1, 2582643, 1, 1, 1, 2, 3, 3, ...].
%e a(20)^(1/4) = [10000000000; 39999999999, 1, 3999999999, 16949152542, 2, 1, 2, 6, 1, 4872106, 3, 9, 2, 3, ...].
%e a(25)^(1/5) = [10000000000; 4999999999999999, 1, 3333333332, 2, 1, 217391304347825, 2, 2, 1, 1, 1, 2, 1, 23980814, 1, 1, 1, 1, 1, 7, ...]. (End)
%t Table[10^(2 n) + 10^n + 1, {n, 0, 15}] (* _Michael De Vlieger_, Sep 27 2015 *)
%t CoefficientList[Series[(3 - 222 x + 1110 x^2)/((1 - 100 x) (1 - 10 x) (1 - x)), {x, 0, 33}], x] (* _Vincenzo Librandi_, Sep 27 2015 *)
%o (PARI) a(n) = { 10^(2*n) + 10^n + 1 } \\ _Harry J. Smith_, Feb 02 2010
%o (PARI) Vec(-3*(370*x^2-74*x+1)/((x-1)*(10*x-1)*(100*x-1)) + O(x^20)) \\ _Colin Barker_, Sep 27 2015
%o (Magma) [10^(2*n) + 10^n + 1: n in [0..20]]; // _Vincenzo Librandi_, Sep 27 2015
%Y Cf. A000533, A002283, A033934, A062397, A074992, A135577, A168624.
%K nonn,base,easy
%O 0,1
%A _Henry Bottomley_, Dec 07 2001
%E Offset changed from 1 to 0 by _Harry J. Smith_, Feb 02 2010
%E More terms from _Michael De Vlieger_, Sep 27 2015