login
A180583
Number of Hamiltonian cycles in C_7 X P_n.
2
1, 7, 126, 1484, 18452, 229698, 2861964, 35663964, 444486280, 5539931796, 69048910000, 860620499760, 10726732430288, 133697577587000, 1666401898058352, 20769976722986288, 258876295158900832
OFFSET
1,2
LINKS
Artem M. Karavaev, FlowProblem.ru web-project: Hamilton Cycles page.
Index entries for linear recurrences with constant coefficients, signature (12,18,-112,-440,-772,-196,2064,3724,2040,496,128,-16).
FORMULA
a(1) = 1,
a(2) = 7,
a(3) = 126,
a(4) = 1484,
a(5) = 18452,
a(6) = 229698,
a(7) = 2861964,
a(8) = 35663964,
a(9) = 444486280,
a(10) = 5539931796,
a(11) = 69048910000,
a(12) = 860620499760,
a(13) = 10726732430288 and
a(n) = -16a(n-12) + 128a(n-11) + 496a(n-10) + 2040a(n-9) +
3724a(n-8) + 2064a(n-7) - 196a(n-6) - 772a(n-5) - 440a(n-4) -
112a(n-3) + 18a(n-2) + 12a(n-1), n>13.
G.f.: x*(16*x^12 -16*x^11 +8*x^10 -192*x^9 +588*x^8 +1996*x^7 +700*x^6 -474*x^5 -400*x^4 -42*x^3 +24*x^2 -5*x +1)/(16*x^12 -128*x^11 -496*x^10 -2040*x^9 -3724*x^8 -2064*x^7 +196*x^6 +772*x^5 +440*x^4 +112*x^3 -18*x^2 -12*x +1). [Colin Barker, Sep 01 2012]
KEYWORD
nonn,easy
AUTHOR
Artem M. Karavaev, Sep 10 2010
STATUS
approved