login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180585
Number of Hamiltonian cycles in C_9 X P_n.
3
1, 9, 510, 12348, 351258, 9806292, 276018090, 7769376972, 218915964618, 6169925169414, 173923080282474, 4903042542453720, 138226113213225360, 3896923927019062734, 109864493967924549384, 3097380080814655131414
OFFSET
1,2
LINKS
Artem M. Karavaev, FlowProblem.ru web-project: Hamilton Cycles page.
FORMULA
a(1) = 1,
a(2) = 9,
a(3) = 510,
a(4) = 12348,
a(5) = 351258,
a(6) = 9806292,
a(7) = 276018090,
a(8) = 7769376972,
a(9) = 218915964618,
a(10) = 6169925169414,
a(11) = 173923080282474,
a(12) = 4903042542453720,
a(13) = 138226113213225360,
a(14) = 3896923927019062734,
a(15) = 109864493967924549384,
a(16) = 3097380080814655131414,
a(17) = 87323767337933601800838,
a(18) = 2461902328199084994926838,
a(19) = 69407973132514050824027916,
a(20) = 1956807009306757665486727506,
a(21) = 55167927811346067821770238916,
a(22) = 1555340096869096304430909957438,
a(23) = 43849442381504976630009404305836,
a(24) = 1236239985030143206263175998483822,
a(25) = 34853107030241718403722175589855382,
a(26) = 982607816763786715239538466269510230,
a(27) = 27702497854161867936556506397339968900,
a(28) = 781011889692865295747597816757847770816,
a(29) = 22018937614195816157746115864333077409670,
a(30) = 620776226482129138228674620305021838319798,
a(31) = 17501440357460810648330727168987922821448020,
a(32) = 493415181716445483930278856798624353063822202,
a(33) = 13910771718167544030594031326608909473440091914,
a(34) = 392184061145291034056836430996430655368129473244,
a(35) = 11056779662054536538877196636446210335611747389240,
a(36) = 311721940301200906636564410157890500349649932236784,
a(37) = 8788324542515357690400665578497505585329578151100314,
a(38) = 247767764405603594976836411571672937518209124905032248,
a(39) = 6985275154732826888934102651732146513978317488797520690,
a(40) = 196934694488562776191538724504707014005230275362083701656,
a(41) = 5552146913930475391896775780459411721609179830228623120556,
a(42) = 156530749616891711989703796217135075442161831077518444319126,
a(43) = 4413045251765663499265310946137401936593664772109267504474906,
a(44) = 124416246915040322673613754759846182187844152126259812122946616,
a(45) = 3507646446686897075662979908868474093975056540036976036361394350,
a(46) = 98890489787534994457207274283663444484620706362763287343857516354,
a(47) = 2788003043937198605713699332783678564131827070121580581489242363832,
a(48) = 78601703659302306505275756589753389215955729769060343088449899118250,
a(49) = 2216004688940341937766809565348458359318820508427391331962206163748948,
a(50) = 62475449675885188060021301740436496785039244182609196021787097992172268,
a(51) = 1761359906720460042297310657965406669505036434033439261695709910821397678,
a(52) = 49657725348070514911320431453902516867983657017740343451686271787991400924
and
a(n) = -188416a(n-51) + 835584a(n-50) + 7955456a(n-49) - 41793024a(n-48) -
33238528a(n-47) + 334600192a(n-46) - 1276157184a(n-45) + 2732681344a(n-44) -
2618432768a(n-43) - 5036989056a(n-42) + 11060535424a(n-41) + 27959018048a(n-40) -
52440361440a(n-39) - 37908518240a(n-38) + 74330191136a(n-37) + 59186108112a(n-36) -
68887152928a(n-35) - 33605932304a(n-34) + 43670159120a(n-33) + 48309187400a(n-32) +
33949381128a(n-31) + 12462888472a(n-30) - 88313767808a(n-29) - 107865096688a(n-28) +
20762733116a(n-27) + 153311805598a(n-26) + 152573320432a(n-25) + 38397703554a(n-24) -
70575876534a(n-23) - 117036064104a(n-22) - 90546530362a(n-21) - 20062310737a(n-20) +
30892900555a(n-19) + 30318783786a(n-18) + 6586175756a(n-17) - 5975151103a(n-16) -
4972136691a(n-15) - 2026783228a(n-14) - 1418765189a(n-13) - 1239197497a(n-12) -
576571223a(n-11) - 60031321a(n-10) + 63704924a(n-9) + 32475252a(n-8) + 6586040a(n-7) +
334567a(n-6) - 152710a(n-5) - 38447a(n-4) - 2238a(n-3) + 280a(n-2) + 23a(n-1), n>52.
CROSSREFS
Sequence in context: A277360 A332149 A112910 * A102909 A367552 A230671
KEYWORD
nonn
AUTHOR
Artem M. Karavaev, Sep 10 2010
STATUS
approved