OFFSET
1,2
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..226
FORMULA
a(n) = (e/Pi)*Integral_{z=-infinity..infinity} z^(2*n) K(0, sqrt(1+z^2)), where K(0, x) is the modified Bessel function of the second kind with order 0 (empirical observation).
a(1) = 1, a(2) = 2, a(n) = (2*n-3)^2*a(n-1) + (2*n-3)*(2*n-5)*a(n-2) for n > 2. - Andrew Howroyd, Dec 24 2019
MATHEMATICA
Table[DifferenceRoot[Function[{f, k}, {f[k+2]==(2k+1)^2 f[k+1]+(2k+1)(2k-1)f[k], f[1]==1, f[2]==2}]][n], {n, 1, 15}] (* Corrected by Wesley Transue, Dec 23 2019 *)
Nest[Append[#1, (2 #2 + 1)^2*#1[[#2 + 1]] + (2 #2 + 1) (2 #2 - 1) #1[[-2]]] & @@ {#, Length@ # - 1} &, {1, 2}, 14] (* Michael De Vlieger, Dec 24 2019 *)
RecurrenceTable[{a[1]==1, a[2]==2, a[n+2]==(2n+1)^2 a[n+1]+(2n+1)(2n-1) a[n]}, a, {n, 20}] (* Harvey P. Dale, Sep 12 2021 *)
PROG
(PARI) seq(n)={my(a=vector(n)); a[1]=1; a[2]=2; for(n=3, #a, a[n]=(2*n-3)^2*a[n-1] + (2*n-3)*(2*n-5)*a[n-2]); a} \\ Andrew Howroyd, Dec 24 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Wesley Transue, Nov 05 2012
EXTENSIONS
Offset corrected by Wesley Transue, Dec 23 2019
STATUS
approved