login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218771
Primes of the form p^2 + 3pq + q^2 with p and q prime.
4
31, 59, 79, 179, 191, 229, 251, 311, 389, 401, 479, 491, 541, 569, 719, 809, 971, 1019, 1061, 1109, 1151, 1249, 1301, 1409, 1451, 1499, 1619, 1931, 1949, 2111, 2141, 2339, 2591, 2609, 2711, 2801, 2939, 3089, 3371, 3389, 3449, 3881, 4021, 4091, 4211, 4391, 4451, 4679, 5039, 5051
OFFSET
1,1
COMMENTS
It is easy to see that a(n) is congruent to 1 or 9 modulo 10. For each n there is a unique pair of primes p < q such that p^2 + 3pq + q^2 = a(n).
This sequence is of particular interest due to Zhi-Wei Sun's surprising conjecture related to A218754. That conjecture implies that this sequence is infinite.
LINKS
Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv preprint arXiv:1211.1588, 2012.
EXAMPLE
a(1)=31 since 2^2 + 3*2*3 + 3^2 = 31 and 2,3,31 are prime.
MATHEMATICA
SQ[n_]:=IntegerQ[Sqrt[n]]
i=0; Do[Do[If[SQ[4Prime[n]+5Prime[k]^2] && PrimeQ[(Sqrt[4Prime[n] + 5Prime[k]^2] - 3Prime[k])/2] == True, i=i+1; Print[i, " ", Prime[n]]; Goto[aa]], {k, 1, PrimePi[Sqrt[Prime[n]/5]]}];
Label[aa]; Continue, {n, 1, 1000000}]
PROG
(PARI) list(lim)=my(v=List(), t); forprime(p=2, sqrtint(lim\4), forprime(q=p+1, sqrt(lim-p^2), if(isprime(t=p^2+3*p*q+q^2), listput(v, t), if(t>lim, break)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Nov 05 2012
(PARI) is_A218771(n, v=0)={ my(r, c=0); isprime(n) & forprime( q=1, sqrtint(n\5), issquare(4*n+5*q^2, &r) || next; isprime((r-3*q)/2) || next; v || return(1); v>1 & print1([q, (r-3*q)/2]", "); c++); c} \\ - M. F. Hasler, Nov 05 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Nov 05 2012
STATUS
approved