login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A074093
Number of values of k such that n = k - largest divisor of k (<k).
1
1, 2, 1, 2, 1, 3, 1, 1, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 1, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 3, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 4, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 4, 1, 1, 1
OFFSET
1,2
LINKS
FORMULA
a(2n+1)=1; sum(k=1, n, a(k)) seems to be asymptotic to C*n with C=1.6... - Benoit Cloitre, Aug 21 2002
EXAMPLE
a(6) = 3 and the three values of k are 7,9 and 12.
MATHEMATICA
f1[n_] := Count[Range[n, 2 n], _?(Differences[Take[Divisors[#], -2]] == {n} &)]; Join[{1}, Table[f1[n], {n, 2, 105}]] (* Jayanta Basu, Jul 30 2013 *)
PROG
(PARI) a(n)=sum(k=2, 2*n, if(k- component(divisors(k), numdiv(k)-1)-n, 0, 1))
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Aug 19 2002
EXTENSIONS
More terms from Benoit Cloitre and Vladeta Jovovic, Aug 21 2002
STATUS
approved