login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265575
LCM-transform of Euler totient numbers (A000010).
4
1, 1, 2, 1, 2, 1, 3, 1, 1, 1, 5, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 1, 11, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 1, 1, 1, 2, 1, 13, 1, 1, 1, 1, 1, 29, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 41, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,3
LINKS
A. Nowicki, Strong divisibility and LCM-sequences, arXiv:1310.2416 [math.NT], 2013.
A. Nowicki, Strong divisibility and LCM-sequences, Am. Math. Mnthly 122 (2015), 958-966.
MAPLE
LCMXfm:=proc(a) local L, i, n, g, b;
L:=nops(a);
g:=Array(1..L, 0); b:=Array(1..L, 0);
b[1]:=a[1]; g[1]:=a[1];
for n from 2 to L do g[n]:=ilcm(g[n-1], a[n]); b[n]:=g[n]/g[n-1]; od;
lprint([seq(b[i], i=1..L)]);
end;
with(numtheory);
t1:=[seq(phi(n), n=1..100)];
LCMXfm(t1);
MATHEMATICA
LCMXfm[a_List] := Module[{L = Length[a], b, g}, b[1] = g[1] = a[[1]]; b[_] = 0; g[_] = 0; Do[g[n] = LCM[g[n - 1], a[[n]]]; b[n] = g[n]/g[n - 1], {n, 2, L}]; Array[b, L]];
LCMXfm[Table[EulerPhi[n], {n, 1, 100}]] (* Jean-François Alcover, Dec 05 2017, from Maple *)
PROG
(PARI)
up_to = 10000;
LCMtransform(v) = { my(len = length(v), b = vector(len), g = vector(len)); b[1] = g[1] = 1; for(n=2, len, g[n] = lcm(g[n-1], v[n]); b[n] = g[n]/g[n-1]); (b); };
v265575 = LCMtransform(vector(up_to, i, eulerphi(i)));
A265575(n) = v265575[n]; \\ Antti Karttunen, Nov 09 2018
CROSSREFS
Cf. A000010.
Other LCM-transforms are A061446, A265574, A265576, A265577, A265578.
Sequence in context: A341621 A074093 A324286 * A352177 A277367 A239936
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 02 2016
STATUS
approved