|
|
A061446
|
|
Primitive part of Fibonacci(n).
|
|
28
|
|
|
1, 1, 2, 3, 5, 4, 13, 7, 17, 11, 89, 6, 233, 29, 61, 47, 1597, 19, 4181, 41, 421, 199, 28657, 46, 15005, 521, 5777, 281, 514229, 31, 1346269, 2207, 19801, 3571, 141961, 321, 24157817, 9349, 135721, 2161, 165580141, 211, 433494437, 13201, 109441
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Fib(n) = A000045(n) = Product_{d|n} a(d), Lucas(n) = A000204(n) = Product_{d|2n and 2^m|d iff 2^m|2n} a(d) (e.g., Lucas(4) = 7 = a(8), Lucas(6) = 18 = a(12)*a(4)). - Len Smiley, Nov 11 2001
A 2001 Iranian Mathematical Olympiad question shows such a sequence exists whenever gcd(a(m),a(n)) = a(gcd(m,n)).
The problem of the characterization of the family of all GCD-morphic sequences F, i.e., F such that GCD(F(m),F(n)) = F(GCD(m,n)), was posed by A. K. Kwasniewski (GCD-morphic Problem). Dziemianczuk and Bajguz (2008) showed that any GCD-morphic sequence is coded by a certain natural number-valued sequence. - Maciej Dziemianczuk, Jan 15 2009
This is the LCM-transform of the Fibonacci numbers (cf. Nowicki). - N. J. A. Sloane, Jan 02 2016
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 1..1000
N. Bliss, B. Fulan, S. Lovett, and J. Sommars, Strong Divisibility, Cyclotomic Polynomials, and Iterated Polynomials, Amer. Math. Monthly, 120 (2013), 519-536.
John Brillhart, Peter L. Montgomery and Robert D. Silverman, Tables of Fibonacci and Lucas factorizations, Math. Comp. 50 (1988), pp. 251-260, S1-S15. Math. Rev. 89h:11002.
C. K. Caldwell, Lucas Aurifeuillian primitive part
R. D. Carmichael, On the numerical factors of the arithmetic forms alpha*n+-beta*n, Annals of Math., 2nd ser., 15 (1/4) (1913/14) 30-48.
M. Dziemianczuk and W. Bajguz, On GCD-morphic sequences, arXiv:0802.1303 [math.CO], 2008.
A. K. Kwasniewski, Cobweb posets as noncommutative prefabs, Adv. Stud. Contemp. Math. vol.14 (1) 2007. pp. 37-47.
Rohit Nagpal and A. Snowden, The module theory of divided power algebras, arXiv preprint arXiv:1606.03431 [math.AC], 2016.
A. Nowicki, Strong divisibility and LCM-sequences, arXiv:1310.2416 [math.NT], 2013.
A. Nowicki, Strong divisibility and LCM-sequences, Am. Math. Mnthly 122 (2015), 958-966.
|
|
FORMULA
|
Let r=(1+sqrt(5))/2. For n>2, the primitive part of F(n)=(r^n-(-1/r)^n)/sqrt(5) is Phi_n(-r^2)/r^phi(n) where Phi_n is n-th cyclotomic polynomial and phi is Euler's totient function A000010.
a(n) = Product_{d|n} Fib(d)^mu(n/d), where mu = A008683 (Bliss, Fulan, Lovett, Sommars, eq. (7)). - Jonathan Sondow, Jun 11 2013
a(n) = lcm(Fib(1),Fib(2),...,Fib(n))/lcm(Fib(1),Fib(2),...,Fib(n-1)). - Thomas Ordowski, Aug 03 2015
a(n) = Product_{k=1..n} Fib(gcd(n,k))^(mu(n/gcd(n,k))/phi(n/gcd(n,k))) = Product_{k=1..n} Fib(n/gcd(n,k))^(mu(gcd(n,k))/phi(n/gcd(n,k))) where mu = A008683, phi = A000010. - Richard L. Ollerton, Nov 08 2021
|
|
MAPLE
|
N:= 200; # to get a(1) to a(N)
L[0]:= 1:
for i from 1 to N do L[i]:=ilcm(L[i-1], combinat:-fibonacci(i)) od:
seq(L[i]/L[i-1], i=1..N); # Robert Israel, Aug 03 2015
|
|
MATHEMATICA
|
t={1}; Do[f=Fibonacci[n]; Do[f=f/GCD[f, t[[d]]], {d, Most[Divisors[n]]}]; AppendTo[t, f], {n, 2, 100}]; t
(* Second program: *)
a[n_] := Product[Fibonacci[d]^MoebiusMu[n/d], {d, Divisors[n]}];
Array[a, 45] (* Jean-François Alcover, Jul 04 2019 *)
|
|
PROG
|
(PARI) a(n)=my(d=divisors(n)); fibonacci(n)/lcm(apply(fibonacci, d[1..#d-1])) \\ Charles R Greathouse IV, Oct 06 2016
|
|
CROSSREFS
|
Cf. A008683, A061447, A061254, A061445, A061442, A061443, A105602, A126025, A126069.
Cf. A000010 (comments on product formulas).
Sequence in context: A271862 A309373 A131401 * A280690 A240000 A193770
Adjacent sequences: A061443 A061444 A061445 * A061447 A061448 A061449
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
David Broadhurst, Jun 10 2001
|
|
EXTENSIONS
|
More terms from Vladeta Jovovic, Nov 09 2001
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 29 2007
Edited by Charles R Greathouse IV, Oct 28 2009
|
|
STATUS
|
approved
|
|
|
|