login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061444 Decimal expansion of log(2 * Pi). 12
1, 8, 3, 7, 8, 7, 7, 0, 6, 6, 4, 0, 9, 3, 4, 5, 4, 8, 3, 5, 6, 0, 6, 5, 9, 4, 7, 2, 8, 1, 1, 2, 3, 5, 2, 7, 9, 7, 2, 2, 7, 9, 4, 9, 4, 7, 2, 7, 5, 5, 6, 6, 8, 2, 5, 6, 3, 4, 3, 0, 3, 0, 8, 0, 9, 6, 5, 5, 3, 1, 3, 9, 1, 8, 5, 4, 5, 2, 0, 7, 9, 5, 3, 8, 9, 4, 8, 6, 5, 9, 7, 2, 7, 1, 9, 0, 8, 3, 9, 5, 2, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Used in formulas for gamma(x), e.g., in Stirling's approximation for m!.

Also decimal expansion of zeta'(0)/zeta(0). - Benoit Cloitre, Sep 28 2002

The value of log(2*Pi) is close to 1 + Sum_{n>=2} log(zeta(n)) = 1.83067035427178011248.... - Arkadiusz Wesolowski, Jul 17 2011

LINKS

Harry J. Smith, Table of n, a(n) for n = 1..20000

Simon Plouffe, log(2*Pi) to 10000 digits

Simon Plouffe, Log(2*pi) to 2000 places

FORMULA

Equals A002162 + A053510 = A131659 - A094642. - R. J. Mathar, Aug 27 2011

Equals 1 + Sum_{k>=1} zeta(2*k)/(k*(2*k + 1)). - Amiram Eldar, Aug 20 2020

EXAMPLE

1.837877066409345483560659472811235279722794947275566825634303...

MATHEMATICA

RealDigits[N[Log[2*Pi], 100]][[1]] (* Arkadiusz Wesolowski, Aug 29 2011 *)

PROG

(PARI) { default(realprecision, 20080); x=log(2*Pi); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b061444.txt", n, " ", d)) } \\ Harry J. Smith, Jul 22 2009

CROSSREFS

Cf. A002162, A053510, A094642, A131659.

Sequence in context: A033990 A248190 A099284 * A011214 A119806 A248296

Adjacent sequences:  A061441 A061442 A061443 * A061445 A061446 A061447

KEYWORD

nonn,cons

AUTHOR

Frank Ellermann, Jun 11 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 26 19:57 EDT 2021. Contains 347672 sequences. (Running on oeis4.)