login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240000
T(n,k)=Number of nXk 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4
13
2, 3, 5, 4, 13, 12, 5, 25, 61, 28, 6, 42, 190, 256, 66, 7, 65, 526, 1372, 1117, 156, 8, 95, 1262, 6527, 10405, 5012, 368, 9, 133, 2766, 27415, 86360, 83029, 22592, 868, 10, 180, 5647, 104291, 635873, 1225281, 685898, 102336, 2048, 11, 237, 10878, 363859
OFFSET
1,1
COMMENTS
Table starts
....2.......3.........4...........5............6............7............8
....5......13........25..........42...........65...........95..........133
...12......61.......190.........526.........1262.........2766.........5647
...28.....256......1372........6527........27415.......104291.......363859
...66....1117.....10405.......86360.......635873......4267171.....26152051
..156....5012.....83029.....1225281.....15981219....191691132...2090236137
..368...22592....685898....18392485....429788876...9314138750.182333502325
..868..102336...5825700...290513038..12392346376.491124025940
.2048..465662..50417154..4767970186.378942837634
.4832.2123857.441675344.80410934960
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +2*a(n-3)
k=2: [order 26]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = (1/6)*n^3 + 1*n^2 + (23/6)*n
n=3: [polynomial of degree 8] for n>6
n=4: [polynomial of degree 19] for n>20
n=5: [polynomial of degree 44] for n>52
EXAMPLE
Some solutions for n=4 k=4
..0..3..3..0....0..0..3..3....3..3..0..0....3..3..0..0....0..0..0..0
..0..0..2..1....0..3..2..3....2..2..3..3....0..3..1..3....3..3..0..0
..3..3..0..0....0..0..2..2....2..0..0..0....3..3..1..2....3..3..1..3
..2..1..2..0....0..3..2..3....3..1..0..0....2..2..2..1....3..3..2..2
CROSSREFS
Column 1 is A239333
Sequence in context: A131401 A061446 A280690 * A193770 A107476 A094140
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 30 2014
STATUS
approved